Assignment 5a: Estimation using the method of moments
We draw a sample of n elements from a continuous uniform distribution of the random variable X. Elements are distributed uniformly between the values a and b, where $a<b$.
Calculate the estimates of a and b from the sample, using the method of moments.
Hint: use the probability distribution function $\frac{1}{b-a}$ to calculate the expectation of X and X^{2}, and equate them to $\bar{x}=\sum_{i=1}^{n} \frac{x_{i}}{n}$ and $\overline{x^{2}}=\sum_{i=1}^{n} \frac{x_{i}^{2}}{n}$, respectively. Solve the resulting equations for a and b. (Make use of the relevant identities factorising differences of powers of b and a.)

Assignment 5b: Estimation of the parameter p of a binomial distribution
We draw a sample of the number of girls in 12 families, all of them having four children. The 12 sample elements are the following:
$3,2,2,0,1,3,1,1,1,2,3,1$
Calculate the estimate of the probability that a girl is born into a family.
(Comment on the result in view of the well-known global population statistics.)

