
Random Walk
January 19, 2022

Chemistry PhD
Zoltán Sándor Kis (EI07G8)

Random Walk
Essay for Applied Statistics

Zoltán Sándor Kis (EI07G8)
January 19, 2022

1 Introduction

In general, random walks are paths that are the result of some number of random steps in some

pre-defined mathematical space. Examples of such random walks are the Brownian motion

from physics (the corresponding mathematical space being R3), or, the coin tossing random

walk—the main topic of this essay.

2 The ideal coin-tossing game

Let us consider a coin-tossing game, where we associate heads with +1 and tails with −1 (the

assignation is completely arbitrary and can be inverted). We are now going to toss a coin n

times, and write down the result of the ith toss as xi. We can denote the partial sum up to the

kth toss as:

yk =
k∑

i=1

xi. (1)

From intuition, and based on the well-known (and rather misunderstood) law of large numbers,

one would assume that this sum is oscillating back and forth around 0 and it approaches it as

the number of tosses approaches infinity, but the reality is quite different: actually the event

that the sum is equal to 0 is an almost impossible event:

lim
n→∞

P (yn = 0) = 0. (2)

We can introduce another new variable, that describes the (signed) average value of the

tosses, to which the law of large numbers does apply:

zk =
yk
k

(3)

lim
n→∞

P (zn = 0) = 1. (4)

1

Random Walk
January 19, 2022

Chemistry PhD
Zoltán Sándor Kis (EI07G8)

Some interesting properties are described by the so-called arcsine laws, described in Theo-

rems 1 to 3 (for proofs, see [1, Chapter 5.4]). For these, we need to know the arcsine distribution.

It has a probability density function and cumulative distribution function as such:

f(x) =
1

π
√
x(1− x)

for x ∈ (0, 1) (5)

F (x) =
2

π
arcsin

(√
x
)

for x ∈ [0, 1]. (6)

For easier visualization, we have the plots of the probability density function and the cumulative

distribution function shown in Figures 1a and 1b, respectively.

The motivation behind this description is an R script I have made modifications to, the

description and the source of which are in Sections 3 and 5, respectively.

Theorem 1 (First arcsine law). The fraction of all i values at which yi > 0 follows an arcsine

distribution.

Remark. The theorem holds true for yi < 0 as well, since the probability of getting heads is the

same as getting tails when tossing a fair coin.

Theorem 2 (Second arcsine law). The last occasion (i) at which point yi changes sign (in other

words, visits the origin) follows an arcsine distribution, after normalizing with the total length

of the run
(
x = i

n

)
.

Theorem 3 (Third arcsine law). The specific i when yi reaches its maximum in a given run

follows an arcsine distribution, after normalizing with the total length of the run
(
x = i

n

)
.

Remark. Theorems 2 and 3 are equivalent.

We shall discuss the seemingly paradoxical nature of these laws further in Sections 2.1

and 2.2.

2

Random Walk
January 19, 2022

Chemistry PhD
Zoltán Sándor Kis (EI07G8)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

(a) Arcsine probability density function.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Arcsine cumulative distribution function.

Figure 1. Arcsine distribution.

3

Random Walk
January 19, 2022

Chemistry PhD
Zoltán Sándor Kis (EI07G8)

2.1 Consequences of the first arcsine law

One would assume that roughly half of yi values of a run—due to equal probability of getting

heads and tails—would be positive, and roughly another half negative. As we can see, actually

the contrary is the case: the most probable results are that all yi values are negative and that

they are all positive.

2.1.1 Goal paradox

This paradox is essentially a reformulation of the coin-tossing game. Here, we have two teams

(let us call them simply A and B) playing some ball game against each other. We assume the

two teams’ skills are identical, meaning for every goal, the events “team A scored” and “team B

scored” are equally probable.

In this scenario, according to Theorem 1, it is the least probable that team A and team B

are in the lead for the same amount of time. For instance, if there were 20 goals in a game, the

probability of one team being in the lead after some 10 of the goals and the other after the

other 10 is merely 6%, meanwhile the probability that one team was in the lead for the whole

game is 35%. These percentages were calculated using a Python script that takes into account

all possible matches. For the source code, see Section 4.

2.2 Consequences of the second arcsine law

As in Section 2.1, we once again arrive at a very unintuitive result. One would expect that since

the coin is fair, yi would oscillate around 0, so the last time it changing sign would be probably

rather soon, and would decrease as we move backwards in the sequence of tosses. As we see,

our first assumption (the change of sign being probable at the last moments) is true, but the

latter one is not, since it is equally possible that the last change of sign occurs very close to the

start of the run.

A real-world application of this is in the stock market [2]. Let us assume that the stock

market acts in an unpredictable, random manner, and the price of an asset can be approximated

with a one-dimensional random walk on the field of rational numbers Q, its steps happening

with a constant (and high) frequency. (We have to assume a unit step length as well, thus this

approximation is only correct in fairly stable markets.) In this case, in a given day (24 hours)

4

Random Walk
January 19, 2022

Chemistry PhD
Zoltán Sándor Kis (EI07G8)

the probability of the stock price reaching its maximum during the last 4 hours is 27%, about

1.5 times as much as one would expect (4
24

≈ 17%). The probability of reaching the maximum in

the last hour is 13% instead of the expected 4%. The values of the stock reaching its maximum

for 2 hour periods of a day are given in Table 1, which were calculated via an approximation

using the arcsine distribution, see Equation (7), where k denotes the upper hour limit of the

interval (with the arbitrary starting point defined at 0, e.g. for the interval between 8 and 10

hours after the starting point k = 10). (Needless to say, this reasoning applies to the minimum

as well, so this is not some “trick” for the stock market.)

P (k) =
2

π

arcsin

(√
k

24

)
− arcsin

(√
k − 2

24

) (7)

Table 1. Probability of a stock reaching its maximum price in a given 2 hour interval in a 24

hour day using the approximation given in Equation (7).

time interval (hours) P / %

0–2 18.6

2–4 8.1

4–6 6.6

6–8 5.8

8–10 5.5

10–12 5.3

12–14 5.3

14–16 5.5

16–18 5.8

18–20 6.6

20–22 8.1

20–24 18.6

5

Random Walk
January 19, 2022

Chemistry PhD
Zoltán Sándor Kis (EI07G8)

3 Documentation of the R program

This program was the main project along with this essay, mentioned briefly in Section 2. The

program simulates several (ideal) coin-toss experiments. An experiment consists of ntoss number

of tosses, and this experiment is repeated nrep times. At every repetition, it calculates the

proportion of time (not in the temporal sense) when the distance was positive compared to the

full length (ntoss) as a =
∑ntoss

i [yi>0]

ntoss
, where [.] denotes the Iverson bracket, i.e. it is equal to 1 if

the statement therein is true and 0 otherwise. The program prints the cumulative distance yi

and its average zi with respect to the number of tosses i for every nintermed_plots experiments

(an example shown in Figure 2a). After all nrep repetitions are over, it plots a histogram of

the proportions of the runs with respect to their a value, and shows the theoretical arcsine

probability distribution function above it (an example shown in Figure 2b). An alternative

version of the script has also been written, in which the aforementioned positive proportion a is

calculated at all i as ai =
∑i

j[yj>0]
ntoss

, not only after the end of each run (thus, this has 999 times

more data—the leading zeros are not taken into account). The difference in both the script

source and the resulting histogram are shown in Section 5.1 and Figure 3, respectively.

The number of tosses in an experiment ntoss and the number of repetitions of the experiment

nrep are given in lines 22 and 23, as n_toss and n_rep, respectively.

After this, we can give the number of repetitions for which an intermediate result is to

be displayed nintermed_plots as intermed_plots. Setting this to 0 will result in no intermediate

results displayed. nintermed_plots ≡ 0 (mod nrep) must hold (i.e. nrep should be an integer multiple

of nintermed_plots), else no intermediate results will be displayed.

The user can set if they want the program to pause after every intermediate result by setting

halt to true or false. If it is true, then pause_time will define for how long (in seconds) the

script stops before moving on.

At the end, the program plots the results in a histogram, with the theoretical arcsine

probability density function plotted on it. n_bins defines how many bins the histogram has,

while n_points_for_arcsin defines how many point we calculate the arcsine probability density

function at.

Finally, rngseed defines the seed for the random number generation. Setting the same seed,

we can get exactly the same sequential series of tosses, as the pseudo-random number generator

6

Random Walk
January 19, 2022

Chemistry PhD
Zoltán Sándor Kis (EI07G8)

provides always the same series of random numbers starting from the same seed.

7

Random Walk
January 19, 2022

Chemistry PhD
Zoltán Sándor Kis (EI07G8)

−20

−10

0

0 250 500 750 1000

toss

d
is

ta
n
c
e

average actual distance

Random walk representation of 1000 coin tosses

(a) An example of an intermediate plot. Distances yi are displayed as a function of the toss number i.

0

1

2

0.00 0.25 0.50 0.75 1.00

The proportion of a run in which the distance is positive

F
re

q
u
e
n
c
y

Arcsine pdf function Histogram of the positive fraction of walks

Histogram for 1000 coin tosses repeated 1000 times

(b) An example of the histogram showing the relative frequency of runs with respect to the proportion

when the distance yi is in the positive domain.

Figure 2. Examples of resulting plots of the script.

8

Random Walk
January 19, 2022

Chemistry PhD
Zoltán Sándor Kis (EI07G8)

0

1

2

3

0.00 0.25 0.50 0.75 1.00

The proportion of a run in which the distance is positive

F
re

q
u
e
n
c
y

Arcsine pdf function Histogram of the positive fraction of walks

Histogram for 1000 coin tosses repeated 1000 times

Figure 3. An example of the histogram showing the relative frequency of runs with respect to

the proportion when the distance yi is in the positive domain, calculated at all i.

9

Random Walk
January 19, 2022

Chemistry PhD
Zoltán Sándor Kis (EI07G8)

4 Source code of the Python script for the calculation of

goal-paradox values

1 import BitVector as bv
2 vectorsize = 20
3 halfLeadCounter = 0
4 allLeadCounter = 0
5

6 for i in range(2**vectorsize):
7 walk = bv.BitVector(intVal=i, size=vectorsize)
8 position = 0
9 positiveCounter = 0

10 negativeCounter = 0
11

12 for j in range(vectorsize):
13 if (walk[j] == 0):
14 position -= 1
15 elif (walk[j] == 1):
16 position += 1
17

18 if (position > 0):
19 positiveCounter += 1
20 elif (position < 0):
21 negativeCounter += 1
22 else:
23 if (walk[j] == 0):
24 positiveCounter += 1
25 else:
26 negativeCounter += 1
27

28 if (positiveCounter == negativeCounter):
29 halfLeadCounter += 1
30

31 if (positiveCounter == vectorsize or negativeCounter == vectorsize):
32 allLeadCounter += 1
33

34 print(halfLeadCounter/2**vectorsize)
35 print(allLeadCounter/2**vectorsize)

10

Random Walk
January 19, 2022

Chemistry PhD
Zoltán Sándor Kis (EI07G8)

5 Source code of the R program described in Section 3

1 # The script uses packages VaRES and ggplot2; thus, these should be
installed prior to running the script.↪→

2 require(VaRES)
3 require(ggplot2)
4 require(profvis)
5

6 # Input values to be specified by the user
7

8 n_toss <- 1000 # Number of tosses in one experiment
9 n_rep <- 1000 # Number of repetitions of the experiment

10 intermed_plots <- 100 # Number of repetitions after which to display
intermediate results (for no intermediate plots: 0)↪→

11 # (criterion: intermed_plots = 0 (mod n_rep))
12 halt <- FALSE # Boolean that describes whether or not to halt

after every intermediate graph↪→

13 pause_time <- 3 # Number of seconds of waiting before going on
with the script (this has an effect only if halt == TRUE)↪→

14 n_points_for_arcsin <- 50 # Number of points on the arcsine pdf function
15 n_bins <- 20 # Number of bins in the histogram
16 rngseed <- 1111 # Seed for the random number generation
17

18 # User-intervention ends here
19

20 set.seed(rngseed)
21 coll_mat <- matrix(data = NA, nrow = n_rep, ncol = 1)
22 colnames(coll_mat) <- as.character(n_toss)
23 for(k in 1:n_rep){
24 rand_vec <- runif(n_toss, -1, 1)
25 exp_vec <- character(0)
26 step_vec <- integer(0)
27 walk_vec <- 0
28 avg_vec <- 0
29 dist_vec <- integer(0)
30 for(j in 1:length(rand_vec)){
31 if(rand_vec[j] >= 0){
32 #exp_vec <- c(exp_vec, "Heads")
33 step_vec <- c(step_vec, -1)

11

Random Walk
January 19, 2022

Chemistry PhD
Zoltán Sándor Kis (EI07G8)

34 walk_vec <- c(walk_vec, walk_vec[length(walk_vec)] - 1)
35 avg_vec <- c(avg_vec, walk_vec[length(walk_vec)] / j)
36 } else {
37 #exp_vec <- c(exp_vec, "Tails")
38 step_vec <- c(step_vec, 1)
39 walk_vec <- c(walk_vec, walk_vec[length(walk_vec)] + 1)
40 avg_vec <- c(avg_vec, walk_vec[length(walk_vec)] / j)
41 }
42 }
43

44 # Plotting and graphics unit starts here #
45

46 if(intermed_plots != 0){
47 if((n_rep %% intermed_plots) == 0){
48 if(k%%intermed_plots == 0){
49 print(k)
50 walk_tab <- as.data.frame(cbind(c(0:n_toss), walk_vec, 10*avg_vec))
51 colnames(walk_tab) <- c("toss","distance", "average")
52 print(ggplot(data = walk_tab, aes(x = toss)) +
53 geom_line(aes(y = distance, colour = "actual distance")) +
54 geom_abline(slope = 0, intercept = 0, col = "red")+
55 geom_line(aes(y = average, colour = "average"), size = 1.2)

+↪→

56 labs(title = paste("Random walk representation of",
as.character(n_toss), "coin tosses", sep = " "), color =
"") +

↪→

↪→

57 theme(plot.title = element_text(size = 12, hjust = 0.5),
legend.position = "top") +↪→

58 scale_color_manual(values = c("average" = "green", "actual
distance" = "black")))↪→

59 if (halt) {
60 Sys.sleep(pause_time)
61 }
62 }
63 }
64 }
65 coll_mat[k,which(colnames(coll_mat) == as.character(n_toss))]<-

length(which(walk_vec > 0)) / length(walk_vec)↪→

66 }

12

Random Walk
January 19, 2022

Chemistry PhD
Zoltán Sándor Kis (EI07G8)

67 for(i in 1:ncol(coll_mat)){
68 histogram <- hist(coll_mat[,i], plot = F, breaks = n_bins)
69 x_hist <- histogram$mids
70 dens_hist <- histogram$density
71 hist_frame <- as.data.frame(cbind(x_hist, dens_hist))
72 arcsinpoints <- matrix(data = 0, nrow = n_points_for_arcsin, ncol = 1)
73 for (j in 1:n_points_for_arcsin){
74 arcsinpoints[j] <- 0 + (j/(n_points_for_arcsin+1))
75 }
76 darcsinpoints <- darcsine(arcsinpoints)
77 data.frame(lapply(hist_frame, "length<-", max(lengths(hist_frame))))
78 print(ggplot() + geom_col(aes(x = hist_frame$x_hist, y =

hist_frame$dens_hist, fill = "Distance histogram"), size = 2, col =
"green") +

↪→

↪→

79 geom_line(aes(x = arcsinpoints, y = darcsinpoints, colour =
"Arcsine pdf function"), size = 2) +↪→

80 labs(x = "The proportion of a run in which the distance is
positive", y = "Frequency", title =paste("Histogram for",
colnames(coll_mat)[i], "coin tosses repeated",
as.character(n_rep), "times", sep = " "), color = "", fill =
"")+

↪→

↪→

↪→

↪→

81 theme(plot.title = element_text(size = 12, hjust = 0.5),
legend.position = "top")+↪→

82 scale_color_manual(values = c("Arcsine pdf function" = "blue")) +
83 scale_fill_manual(values = c("Histogram of the positive fraction

of walks" = "green")))↪→

84 }

13

Random Walk
January 19, 2022

Chemistry PhD
Zoltán Sándor Kis (EI07G8)

5.1 Alternative histogram script

...

35 coll_mat <- matrix(data = NA, nrow = n_rep, ncol = n_toss-1)
36 colnames(coll_mat) <- character(length = n_toss-1)
37 for (i in 1:n_toss-1){
38 colnames(coll_mat)[i] <- as.character(i+1)
39 }

...

82 for (i in 2:n_toss){
83 coll_mat[k,which(colnames(coll_mat) == as.character(i))] <-

length(which(walk_vec[2:i] > 0)) / length(walk_vec[2:i])↪→

84 }
...

88 histogram <- hist(coll_mat, plot = F, breaks = n_bins)

References

[1] Peter Mörters and Yuval Peres. Brownian Motion. Cambridge Series in Statistical and Proba-

bilistic Mathematics. Cambridge University Press, 2010. doi: 10.1017/CBO9780511750489.

[2] M. G. Kendall and A. Bradford Hill. “The Analysis of Economic Time-Series-Part I: Prices”.

In: Journal of the Royal Statistical Society. Series A (General) 116.1 (1953), pp. 11–34.

issn: 00359238. url: http://www.jstor.org/stable/2980947.

14

https://doi.org/10.1017/CBO9780511750489
http://www.jstor.org/stable/2980947

	Introduction
	The ideal coin-tossing game
	Consequences of the first arcsine law
	Goal paradox

	Consequences of the second arcsine law

	Documentation of the R program
	Source code of the Python script for the calculation of goal-paradox values
	Source code of the R program described in sec:documentation
	Alternative histogram script

	References

