Lectures delivered by Ernő Keszei, emeritus professor of chemistry , Room No. 148, phone: 372-2500 / ext. 1904, keszei-AT-chem.elte.hu
Time and location:
Tuesday 4:00 to 5:30 PM, Room 132, Chemistry BuildingExams are forseen in Room No. 148, Chemistry Building
Actual schedule:
|
|
|
|
|||
3 | 7 | 5 | ||||
10 | 14 | 12 | ||||
17 | 21 | 19 | ||||
19 | 24 | 28 | ||||
26 | 31 |
October
3,
Tuesday:
October
10,
Tuesday:
December 19,
Tuesday:
2nd lecture: Probability theory basics II. -
Expectations and their properties. Calculation of the expectation as a
linear operation. Some particularly important expectations. (Distribution mean,
distribution moments, variance, covariance, correlation coefficient, entropy.)
Some important relations for calculating expectations.
The covariance matrix and its properties.
Relation between independence of random variables and their covariance.
Calculation of (normalised) probability density function, if not known. The law
of large numbers. Stochastic convergence and random walk.
To study: An Excel worksheet to explore random walk and
fluctuations. A detailed
explanation of the waiting-time paradox.
Textbook pp. 22 to 45.
3rd lecture:
To study:
Textbook pp. 40 to 57.
Homework: waiting time and lifetime.
Auxiliary material: Arcsin ditribution:
description of use /
R-code to run.
17,
Tuesday:
4th lecture:
Probability theory basics IV. -
Properties and use of the Normal distribution.
Construction of a p.d.f. from physical calculations.
Homework: Mean and variance of a normal distribution.
24,
Tuesday:
5th lecture:
Introduction to statistical methods. Chi-squared, Student's t, and Fisher's F
distribution. Distributions without a maximum. The arcsin distribution.
The aim and methods of statistics. Population vs. sample. Sampling. Estimation
and characteristics of estimators. Estimation methods. Histograms. Sample
statistics. Sample mean, sample variance and covariance.
Auxiliary material: Problems concerning sampling in a
Hungarian election and a U.S. election. A
short appetizing paper and a
deeper analysis
on cognitive bias (or "self fooling") from Nature.
Homework: histogram construction.
31,
Tuesday:
No lecture:
Autumn holiday
7,
Tuesday:
6th lecture:
Estimators, estimation and estimates. Expected properties of estimators. Methods
of estimation. Histograms. The method of maximum likelihood and a few actual
applications. Further examples concerning maximum likelihood.
Auxiliary material: Assignment for histogram
construction.
November 14, Tuesday:
7th lecture:
Estimation: The method of least squares. The method of moments. Other estimation
methods. Estimation of expectation and variance of functions of random
variables.
Confidence intervals. Formulation of confidence in a computable form. Confidence
interval for the expectation of a normal distribution with known variance.
Confidence interval for the expectation of a normal distribution with unknown
variance. Confidence interval for the the parameters of a binomial distribution.
Auxiliary material: Assignment for parameter
estimation using the method of moments.
21, Tuesday:
8th lecture:
Confidence interval for the the parameters of a binomial distribution.
Confidence interval for the variance. Approximate confidence interval for a
function of random variables. Confidence interval for the difference of the
expectations of two random variables.
Statistical hypothesis testing - general considerations. Null hypothesis and
alternative hypothesis. Types of hypotheses. Statistics underlying decision
making. Type I and type II errors. Power function of the test.
Auxiliary material: Common
confusions
concerning hypothesis testing. Assignment concerning confidence intervals:
1. Confidence of mean and variance. 2.
Confidence and comparison of two means.November 28, Tuesday:
9th lecture: Statistical hypothesis testing:
Null hypothesis and alternative hypothesis. Types of hypotheses. Statistics
underlying decision making. Type I and type II errors. Test on the mean of a
normal distribution with known and unknown variance. Test on the parameter p
of a binomial distribution ("test on proportions"). Tests between means drawn
from two samples in the case of normal distributions and binomial distributions
("tests on differences").
Auxiliary material: Assignement on
the confidence interval of proportion differences;
Assignement on
testing a mean.
5, Tuesday:
10th lecture:
Tests on matching pairs. Nonparametric tests. The Sign-test; the Mann-Whitney
and Wilcoxon (Rank-Sum) test. Tests on several means: One-way ANOVA and
two-way ANOVA tests. Multivariate analysis of variance (MANOVA).
Homoscedasticity tests (tests on variances). Functional relations between random
variables. Testing the correlation coefficient.
Auxiliary material: A CU Boulder leaflet on
MANOVA; Assignement on testing two
meansns. Assignment on
1-way ANOVA, assignment on 2-way ANOVA.,
Tuesday:
11th lecture: Estimation of parameters
describing functions of random variables. The general straight line and the
straight line through the origin. Testing the difference between the two cases:
the significance test of the intercept. Weighted least squares (LSQ) estimation.
Optimisation of weights to give MVU estimation. Implicit regression.
Overview of the conditions for the validity of LSQ estimation.
Multivariate analysis: a short overview of multivariate methods.
No lecture