The role of temperature dependence of ion-ion reactions in determining the mechanism Reaction: $A + B \rightleftharpoons AB^{\ddagger} \rightarrow \text{products}$ Based on the relations $\Delta S = -\left(\frac{\partial \Delta G}{\partial T}\right)_P$ and $\Delta G_{e.s.} = \frac{Nz_A z_B e^2}{4\pi\varepsilon_0 \varepsilon_r r_\pm}$, we have $$\Delta S_{\rm e.s.}^{\ddagger} = \frac{Nz_{\rm A}z_{\rm B}e^2}{4\pi\varepsilon_o\varepsilon_r^2r_{\ddagger}} \left(\frac{\partial\varepsilon_r}{\partial T}\right)_P = \frac{Nz_{\rm A}z_{\rm B}e^2}{4\pi\varepsilon_o\varepsilon_rr_{\ddagger}} \left(\frac{\partial\ln\varepsilon_r}{\partial T}\right)_P$$ With $N = 6.022 \times 10^{-23} \text{ mol}^{-1}$, $e = 1.602 \times 10^{-19} \text{ C}$ and $\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$ (or C/(Vm)), using typical data in a solvent of water: $\varepsilon_0 \approx 80$, $r_{\ddagger} = 200 \text{ pm}$ and $\left(\frac{\partial \ln \varepsilon_r}{\partial T}\right)_P \approx -0.0046 \text{ K}^{-1}$, we get $$\Delta S_{\text{e.s.}}^{\ddagger} \approx -40z_{\text{A}}z_{\text{B}} \frac{\text{J}}{\text{mol K}}$$ As the pre-exponential factor in the Arrhenius equation is $A = \frac{k_{\rm B}T}{h} e^{\frac{\Delta S^{\ddagger}}{R}}$, we get $$\Delta S_{\rm e.s.}^{\ddagger} \approx -4.8 z_{\rm A} z_{\rm B}$$ Thus $$e^{-4.8 z_{\text{A}} z_{\text{B}}} = 10^{-\frac{4.8}{\ln 10} z_{\text{A}} z_{\text{B}}} \approx 10^{-2 z_{\text{A}} z_{\text{B}}}$$ It means that 1 unit increase in the product $z_A z_B$ is equivalent to a 100-fold decrease in A. Let us suppose $\Delta S_{\rm neutral}^{\ddagger} = 0$, and $A_{\rm neutral} = 10^{13}\,{\rm dm^3/(mol~s)}$, then we have the following data: (Left: calculated, right: experimental.) | \mathcal{Z}_{A} | $Z_{\mathbf{B}}$ | $A \over dm^3/(mol s)$ | ΔS^{\ddagger} J / (mol K) | A _{experimental} dm ³ /(mol s) | $\Delta S_{\text{experimental}}^{\ddagger}$
$dm^3/(\text{mol s})$ | Reaction | |----------------------------|------------------|------------------------|-----------------------------------|--|--|--------------------------------------| | +3 | -1 | 10 ¹⁹ | 120 | ~10 ¹⁹ | ~120 | $Cr(H_2O)_6^{3+} + CNS^-$ | | +2 | -1 | 10 ¹⁷ | 80 | 5×10 ¹⁹ | 92 | $Co(NH_3)_5Br^{2+} + OH^-$ | | 0 | -2 | 10 ¹³ | 0 | 1×10 ¹⁴ | 25 | $Cr(H_2O)_6^{3+} + CNS^-$ | | -1 | -1 | 10 ¹¹ | -40 | 6×10 ¹⁰ | -45 | $CH_2BrCOOCH_3 + S_2O_3^{2-}$ | | -1 | -1 | 10 ¹¹ | -40 | 9×10 ⁸ | -7 1 | ClO ⁻ + ClO ²⁻ | | -1 | -2 | 10 ⁹ | -80 | 1×10 ⁹ | -80 | $CH_2BrCOO^- + S_2O_3^{2-}$ | | +2 | +2 | 10 ⁵ | -160 | 1×10 ⁸ | -100 | $Co(NH_3)_5Br^{2+} + Hg^{2+}$ | | -2 | -2 | 10 ⁵ | -160 | 2×10 ⁴ | -170 | $S_2O_4^{2-} + S_2O_4^{2-}$ | | -2 | -2 | 10 ⁵ | -160 | 2×10 ⁶ | -130 | $S_2O_3^{2-} + S_2O_3^{2-}$ | As it can be seen, experimental determination of the pre-exponential factor can be used to check the reaction mechanism.