The role of temperature dependence of ion-ion reactions in determining the mechanism

Reaction: $A + B \rightleftharpoons AB^{\ddagger} \rightarrow \text{products}$

Based on the relations $\Delta S = -\left(\frac{\partial \Delta G}{\partial T}\right)_P$ and $\Delta G_{e.s.} = \frac{Nz_A z_B e^2}{4\pi\varepsilon_0 \varepsilon_r r_\pm}$, we have

$$\Delta S_{\rm e.s.}^{\ddagger} = \frac{Nz_{\rm A}z_{\rm B}e^2}{4\pi\varepsilon_o\varepsilon_r^2r_{\ddagger}} \left(\frac{\partial\varepsilon_r}{\partial T}\right)_P = \frac{Nz_{\rm A}z_{\rm B}e^2}{4\pi\varepsilon_o\varepsilon_rr_{\ddagger}} \left(\frac{\partial\ln\varepsilon_r}{\partial T}\right)_P$$

With $N = 6.022 \times 10^{-23} \text{ mol}^{-1}$, $e = 1.602 \times 10^{-19} \text{ C}$ and $\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$ (or C/(Vm)), using typical data in a solvent of water: $\varepsilon_0 \approx 80$, $r_{\ddagger} = 200 \text{ pm}$ and $\left(\frac{\partial \ln \varepsilon_r}{\partial T}\right)_P \approx -0.0046 \text{ K}^{-1}$, we get

$$\Delta S_{\text{e.s.}}^{\ddagger} \approx -40z_{\text{A}}z_{\text{B}} \frac{\text{J}}{\text{mol K}}$$

As the pre-exponential factor in the Arrhenius equation is $A = \frac{k_{\rm B}T}{h} e^{\frac{\Delta S^{\ddagger}}{R}}$, we get

$$\Delta S_{\rm e.s.}^{\ddagger} \approx -4.8 z_{\rm A} z_{\rm B}$$

Thus

$$e^{-4.8 z_{\text{A}} z_{\text{B}}} = 10^{-\frac{4.8}{\ln 10} z_{\text{A}} z_{\text{B}}} \approx 10^{-2 z_{\text{A}} z_{\text{B}}}$$

It means that 1 unit increase in the product $z_A z_B$ is equivalent to a 100-fold decrease in A.

Let us suppose $\Delta S_{\rm neutral}^{\ddagger} = 0$, and $A_{\rm neutral} = 10^{13}\,{\rm dm^3/(mol~s)}$, then we have the following data: (Left: calculated, right: experimental.)

\mathcal{Z}_{A}	$Z_{\mathbf{B}}$	$A \over dm^3/(mol s)$	ΔS^{\ddagger} J / (mol K)	A _{experimental} dm ³ /(mol s)	$\Delta S_{\text{experimental}}^{\ddagger}$ $dm^3/(\text{mol s})$	Reaction
+3	-1	10 ¹⁹	120	~10 ¹⁹	~120	$Cr(H_2O)_6^{3+} + CNS^-$
+2	-1	10 ¹⁷	80	5×10 ¹⁹	92	$Co(NH_3)_5Br^{2+} + OH^-$
0	-2	10 ¹³	0	1×10 ¹⁴	25	$Cr(H_2O)_6^{3+} + CNS^-$
-1	-1	10 ¹¹	-40	6×10 ¹⁰	-45	$CH_2BrCOOCH_3 + S_2O_3^{2-}$
-1	-1	10 ¹¹	-40	9×10 ⁸	-7 1	ClO ⁻ + ClO ²⁻
-1	-2	10 ⁹	-80	1×10 ⁹	-80	$CH_2BrCOO^- + S_2O_3^{2-}$
+2	+2	10 ⁵	-160	1×10 ⁸	-100	$Co(NH_3)_5Br^{2+} + Hg^{2+}$
-2	-2	10 ⁵	-160	2×10 ⁴	-170	$S_2O_4^{2-} + S_2O_4^{2-}$
-2	-2	10 ⁵	-160	2×10 ⁶	-130	$S_2O_3^{2-} + S_2O_3^{2-}$

As it can be seen, experimental determination of the pre-exponential factor can be used to check the reaction mechanism.