
Chapter 10

Elements of Equilibrium Statistical

Thermodynamics

During the development of phenomenological thermodynamics, several scientists

tried to interpret its formalism on the basis of the movement of the multitude of

molecules contained in the system. The first success of this effort was the derivation

of equations of state of gases, which has inspired the name kinetic theory of
gases for these calculations. Despite this success, the theory contained several

contradictions, which could not be solved. (An important shortcoming was the

fact that the description based on classical mechanics was symmetrical to the

inversion of time, while real thermodynamic phenomena are irreversible with

respect to time.) The breakthrough was made by Maxwell and Boltzmann who

made use of the probability distribution of the energy of molecules. This invention

led Boltzmann to the molecular interpretation of the second law of thermodynamics,

thus explaining also the nature of entropy. In the last few years of the nineteenth

century, Gibbs generalized and systematized the theory founded by Maxwell and

Boltzmann to interpret thermodynamics on a statistical basis, and he also coined the

expression statistical mechanics. In the first two decades of the twentieth century,

the development of quantummechanics enabled the understanding of the underlying

physical basis of the formalism of statistical mechanics.

As it is stated in this book prior to the discussion of the postulates of thermody-

namics, the number of particles in a macroscopic quantity of material is of the order

of magnitude of the Avogadro constant (6.022 � 1023 particles/mol), thus it is

hopeless to describe the behavior of individual particles; we must be satisfied with

the description of the mean behavior of their assembly. Having realized this, it is

immediately obvious that we should describe the large ensemble of molecules by

the methods of probability theory. When comparing quantities calculated using

probability theory with macroscopic observations, some mean properties of the

assembly of particles – that is, expected values – can be identified with thermody-

namic quantities. There are a surprisingly low number of such properties; thus, this

description of the system leads to results readily applicable in thermodynamics. The

foundation of thermodynamics based on this approach is called statistical thermo-
dynamics, or, in a more general sense, statistical physics. Using this approach,

equilibrium thermodynamics can be constructed in a simpler way, using fewer
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postulates than in the phenomenological theory. However, we shall not follow the

way of complete deduction of thermodynamics from the principles of statistical

physics, as we have already introduced thermodynamics in a phenomenological

postulatory manner. Instead, we suppose prior knowledge of thermodynamic

principles and quantities and deal only with actual calculations of thermodynamic

properties. As we shall see, this approach can lead to the calculation of the

fundamental equations in a multitude of systems based on molecular properties of

the constituent particles.

From the basic quantities used in thermodynamics, most of them – for example,

the (internal) energy U, the composition ni, the pressure P, the volume V – were

already known from mechanics and chemistry, except for the entropy S and the

temperature T. However, temperature was a quantity that could be measured even

prior to thermodynamic theory; contrary to the entropy, which is derived from other

measurable quantities using thermodynamic formalism. Therefore, one of the main

thrusts of statistical thermodynamics is to determine entropy based on the mechan-

ical behavior of the multitude of particles. Once the entropy of a system is

determined as a function of U, V and the composition data ni, it is a fundamental

equation,1 which enables to calculate any thermodynamic properties in any states

(cf. Sect. 4.4.3).

10.1 The Microcanonical Ensemble

The foundations of phenomenological thermodynamics were developed first for

simple, isolated systems. For similar reasons, we begin the treatment of statistical

thermodynamics for the same systems, adding a further simplification of restricting

the treatment to a single component. The mechanical model of a simple, isolated

single-component system is a population of N identical molecules placed in a fixed

volume V, having a fixed overall energy E. Following Gibbs, we call this model a

microcanonical ensemble,2 though it is also called as an N, V, E ensemble. Note that

the composition variable is not the usual amount of substance n but the number of

molecules N; as we describe molecular properties. The relation between the two

variables is provided by the Avogadro constant NA.

The microcanonical ensemble can be interpreted in two ways. It can be thought

of as a real ensemble consisting of a very large number of isolated systems in

different states in accordance with the fixed values of N, V, and E. As these states
are not discernable macroscopically, they are called microstates. It can also be

thought of as a temporal succession of microstates in the same isolated system,

where the microstate of the system changes in time but conserves the same values of

1This is of course only true if we deal with simple systems, where the system cannot change energy

with the surroundings but by means of volume work and heat. For more complicated systems, we

have to include other extensive variables characterizing additional interactions.
2The origin of the name is related to the canonical ensemble. (See according footnote.)
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N, V, and E. According to the ergodic hypothesis,3 the expected values of thermo-

dynamic interest of a random variable over time and that over the ensemble are the

same. Consequently, from a statistical point of view, the only relevant information

is the probability of individual microstates of the ensemble, which is given by the

probability distribution function over the microstates.

It is important to specify what does the notion “state” means from a statistical

point of view. A state – as it refers to a large assembly of molecules – is to be

understood in a quantum mechanical sense, that is, those states are considered to be

different, which differ at least in one quantum number. However, quantum states of

a macroscopic system are quite different from what we have learnt for individual

isolated molecules. The number of different states for the multitude of molecules

having complicated interactions is in the order of the magnitude of the Avogadro

constant. As the energy of the system is finite, the energy of “neighboring”

microstates is only slightly different. As a consequence, the system can have rather

easy transitions between such states. (This can happen, for example, in case of

collisions of the particles when they can exchange some energy – while the overall

energy of the system remains unchanged.) According to quantum mechanics,

such “easy” transitions can also happen by random fluctuations. From the point

of view of the distribution of states, it means that each state has an equal probability.

This principle is expressed by the only postulate of (equilibrium) statistical

thermodynamics:

In a microcanonical ensemble, every permissible quantum state conform to the
conditions of fixed N, E and V occurs with equal probability if the ensemble
represents the equilibrium state of the system.

Let us discuss the consequences of this postulate. A particle system with a

macroscopic constraint in a given quantum state quickly undergoes transitions

exploring many microstates. As the probability of these microstates is equal, the

system explores all states within finite time, thus attaining equilibrium. Removing

the constraint (e.g., removing an internal wall) opens up the possibility of previ-

ously precluded microstates. As the system experiences again that the entirety of

the states (now including new states) is equally probable, it will explore the newly

available microstates as well within a finite time while attaining the new equilib-

rium. This means that the system explores the maximum of the permitted states

available in equilibrium. This maximum principle reminds us of Postulate 2 of

thermodynamics – what we shall consider more thoroughly later.

Another interesting point is the behavior of the system starting from a particular

microstate, after a few transitions, if we suddenly reverse the time axis. In a

mechanical system, movements are symmetrical with respect to the inversion of

time, thus the system should go back to the starting microstate after exactly the

same number of transitions as it took to reach the state of inversion. Now, the

postulate formulated above makes this return impossible; the transition being

equally probable to any state makes the system to explore them in a random way,

3The word ergodic has been coined by Boltzmann from the Greek words ergon ¼ work and

‛odoς ¼ path.
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thus necessarily losing the way back to where it came from. Consequently, the

postulate assures the irreversibility of thermodynamic processes.

Let us discuss the consequences of the maximum principle mentioned above.

Consider a thermodynamic system modeled by an E, V, N ensemble virtually

divided into two parts, using the notation of Fig. 10.1.

As the variables of the entropy function S(E, V, N) are extensive, the following
equations hold:

N ¼ N1 þ N2;

V ¼ V1 þ V2;

E ¼ E1 þ E2: (10.1)

Entropy is an extensive quantity, thus we can write the additivity relation:

S E;V;Nð Þ ¼ S1 E1;V1;N1ð Þ þ S2 E2;V2;N2ð Þ: (10.2)

It is easy to recognize that the number of states in the entire system is the product
of the number of states in the two subsystems. (As to each individual state in one of

the subsystems, we can have any one of the other subsystem.) Denoting the number

of states by the capital Greek letter O, we can write this property as:

O E;V;Nð Þ ¼ O1 E1;V1;N1ð Þ O2 E2;V2;N2ð Þ: (10.3)

Taking the logarithm of both sides, the equation still holds:

lnO E;V;Nð Þ ¼ ln O1 E1;V1;N1ð Þ þ ln O2 E2;V2;N2ð Þ: (10.4)

Comparing this with the additivity relation of entropy, we can conclude that the

function S(E, V, N) differs only by a constant factor from the function O(E, V, N):

S E;V;Nð Þ ¼ kln O E;V;Nð Þ: (10.5)

This is the expression of entropy as a function of the number of states in a

microcanonical ensemble. The function O(E, V, N) is called the microcanonical
partition function. Thus, we can state that we have reached the goal of statistical

considerations; by determining the possible number O of microstates as a function

of E, V and N and multiplying its logarithm by k, we get the entropy-based

Fig. 10.1 A microcanonical ensemble divided into two parts, which corresponds to an isolated

system divided into two subsystems
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fundamental equation.4 The partition function also specifies the probability distri-

bution function over the microstates. All the O states are equally probable, thus this

function is a constant for all microstates i:

pi ¼ 1

O
: (10.6)

(The sum of the probabilities of all possible states should give unit.)

The constant k should be chosen so that the scale of entropy is identical to

that used in phenomenological thermodynamics. Obviously, the zero point of the

scale is independent of the choice of k, as the possible minimum of the number of

states is 1. We get the well-known entropy scale by choosing the constant as R/NA,

the gas constant divided by the Avogadro constant. It is “the gas constant for a

single particle”, k ¼ 1.3807 � 10–23 J/K, and it is called the Boltzmann constant.
This choice also guarantees that the partial derivative of the function S(E, V, N) is
exactly the inverse of temperature, 1/T, in K units.

10.1.1 Statistical Thermodynamics of the Einstein Solid
in Microcanonical Representation

Let us discuss an early example of statistical entropy calculations, the Einstein

model of a crystalline solid. In this model, identical particles are localized in each

position of the crystal lattice, which are considered as three-dimensional harmonic

oscillators with the same ground state frequency o0 in the three directions. (This is

identical to the assumption that the attractive forces pulling the particle back to the

lattice point are proportional to the deflection and are the same in each direction.)

The model does not consider different states of the nuclei or electrons but the

excitation of the lattice vibrations. The N lattice points are coupled together, thus

the entire crystal can have 3N collective vibrational modes. The lowest possible

frequency is very close to zero (equivalent to a wavelength that fits into the

macroscopic crystal), while the highest permissible frequency corresponds to a

wavelength comparable to the interparticle distance in the crystal. Following

Einstein, this can be modeled by distributing the internal energy U among the 3N
harmonic oscillators. Each oscillator can have a frequency which is a multiple

integer of o0. The energy of a harmonic oscillator is given by,

E ¼ �ho0 nþ 1

2

� �
; (10.7)

4Boltzmann used the name “thermodynamic probability” (Wahrscheinlichkeit in German) for the

number of states whence the notationW originally used by him. This has been changed in English

to a Greek letter of similar shape and role o, which in turn got capitalized to become O.
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where �h ¼ h/2p ¼ 1.055 � 10–34 Js is Planck’s constant. Fixing the zero level of

energy at �ho0/2, the energy of the oscillator can assume the discrete values that are

multiples of �ho0 (one vibrational energy quantum), including zero.

The physical model can be “translated” into mathematical language the follow-

ing way. The internal energy U is available in the form of U/�ho0 vibrational quanta

that can be distributed among the 3N oscillators. What is the number of possible

states that corresponds to this condition? An equivalent problem is to distribute

U/�ho0 pebbles in 3N (distinguishable) boxes. (Lattice points are distinguishable as

they are fixed to one single position in the crystal.) This is a simple combinatorial

task, but it can be further simplified – as shown in Fig.10.2.

At the bottom of the figure, we can see the beginning and the end of a possible

arrangement of U/�ho0 indistinguishable pebbles and 3N – 1 indistinguishable bars

in a row. The number of possible arrangements is exactly the same as in case of

the original distribution of pebbles in boxes as shown at the top of the figure. Using

combinatorial terms, this is the number of permutation ofU/�ho0 + 3N – 1 elements

with repetition, where there are U/�ho0 identical elements of the first kind (pebbles)

and 3N – 1 identical elements of the second kind (bars). From combinatorial

identities, we can write this number as:

O ¼ P
U

�ho0
;3N�1

U
�ho0

þ3N�1
¼

3N � 1þ U
�ho0

� �
!

ð3N � 1Þ! U
�ho0

� �
!
: (10.8)

We can simplify the notation by introducing a ¼ 3N – 1 and b ¼ U/�ho0, thus

the calculation of O is equivalent to the calculation of
ðaþ bÞ!
a!b!

. As the number of

lattice points N is rather large (it is in the order of magnitude of 1023), we can use the

Stirling formula to calculate the factorial, which is valid to a good approximation

if N >> 1:

ln N!ð Þ ¼ N lnN � N: (10.9)

Fig. 10.2 Three equivalent

formal models of the Einstein

solid. First row: distribution
of U/�ho0 pebbles in 3N
distinguishable boxes.

Second row: division of

U/�ho0 indistinguishable

pebbles into stacks using

3N – 1 bars. Third row:
arrangement of U/�ho0

indistinguishable pebbles and

3N – 1 indistinguishable bars

in a row
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This formula provides the logarithm of the factorial, which readily leads to ln O.
Starting with the calculation of the simplified notation, we get:

ln
ðaþ bÞ!
a!b!

¼ lnðaþ bÞ!� ln a!� ln b! ffi ðaþ bÞ lnðaþ bÞ � a ln a� b ln b ¼

a lnðaþ bÞ � ln a½ � � b lnðaþ bÞ � ln b½ � ¼ a ln
aþ b

a
þ b ln

aþ b

b

¼ a ln 1þ b

a

� �
þ b ln 1þ a

b

� �
:

(10.10)

Resubstituting a and b, the entropy function can be written as follows:

S ¼ 3kN ln 1þ U

3N�ho0

� �
þ kU

�ho0

ln 1þ 3N�ho0

U

� �
: (10.11)

Rewriting this N-particle formula for particles of Avogadro-number, we get the

(intensive) molar entropy s:

s ¼ 3kNA ln 1þ u

3NA�ho0

� �
þ 3NAku

3NA�ho0

ln 1þ 3NA�ho0

u

� �
; (10.12)

with u being the molar internal energy. Let us substitute R in place of kNA and u0 in
place of 3NA�ho0 (i.e., the reference state is the one when every oscillator has an

average energy �ho0). Thus, the molar entropy becomes

s ¼ 3R ln 1þ u

u0

� �
þ 3R

u

u0
ln 1þ u0

u

� �
; (10.13)

which is a compact form of the fundamental equation of the Einstein solid. Note

that this is an intensive equation of state, thus it does not contain N as a variable.

Partial derivation of this entropy function with respect to u leads to the inverse

temperature. From the function 1/T, we can express u as a function of temperature.

Derivating the u function with respect to T provides the molar heat capacity cV.
Without showing the details of these calculations, we mention that the value of the

cV function thus obtained is zero at T ¼ 0 and rises exponentially with temperature

until saturation, when it becomes a constant. This constant is identical for many

solids with the experimentally determined heat capacity. This tendency is also in

accordance with the experiments, thus the thermal properties of the Einstein solid

qualitatively reflect the behavior of crystals. However, this is not the case for the

mechanical properties; as it can be seen from (10.13), the calculated entropy does

not depend on volume. Accordingly, the pressure we can calculate as P ¼ T
ds

dv

� �
u
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[see e.g., (2.53)] is zero, which is evidently a contradiction. Thus, the Einstein

model of solids cannot be used even qualitatively for mechanical purposes.5

10.1.2 Statistical Thermodynamics of a System of Two-State
Molecules in Microcanonical Representation

Another example that illustrates the usefulness of statistical thermodynamics in

calculating the entropy is a system of a single component consisting of molecules

that have a ground state (which is the zero level of energy) and an excited state

having a molecular energy e. There exist similar molecules in reality as well, having

two relatively low energy levels, their third and higher energy states having much

higher energies so that they are not populated at moderate temperatures. In the

corresponding microcanonical ensemble, there are U/e molecules in the excited

state and N – U/e molecules in the ground state.

The number of possible states can be calculated using combinatorial

considerations. The task is now to determine the number of ways of choosing U/e
molecules out of the N molecules, which is the number of combinations without

repetition of U/e elements chosen from the total number of N elements:

O ¼ CN;Ue
¼ N!

U
e ! N � U

e

� �
!
: (10.14)

Let us simplify the notation again by introducing a ¼ N and b ¼ U/e, thus the

calculation of O is equivalent to the calculation of
a!

b!ða� bÞ! . Let us apply again

the Stirling formula for large numbers to approximate the logarithm of their

factorial:

ln
a!

b!ða� bÞ! ¼ a ln a� b ln b� ða� bÞ lnða� bÞ: (10.15)

After some rearrangement and addition of the terms –b ln a + b ln a resulting in
zero, we get:

ðb� aÞ lnða� bÞ � b ln bþ a ln a� b ln aþ b ln a

¼ ðb� aÞ ln a� b

a
� b ln

b

a
: (10.16)

5Despite this inadequacy, the Einstein solid played an important role in the history of thermody-

namics. The experimental evidence already known for a long time that the molar heat capacity of

solids changes with temperature could not be explained before. It was Einstein who succeeded to

give this explanation by using the results of both quantum mechanics and statistical physics.
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Resubstituting N and U/e, we obtain the expression of entropy:

S ¼ k lnO ¼ U

e
� N

� �
k ln 1� U

Ne

� �
� U

e
k ln

U

Ne
: (10.17)

Obviously, this entropy function is also independent of volume, thus its mechanical

properties are not satisfactory. However, the thermal properties are correct; for

example, temperature is always positive, what we can check as follows:

@S

@U

� �
V;N

¼ 1

T
¼ k

e
ln

Ne
U

� 1

� �
: (10.18)

Solving this equation of state for the internal energy U, we get the energy

function:

U ¼ Ne
1þ e

e
kT
: (10.19)

Obviously, the limit of the exponential when T!1 is unit, and that of the

energy is Ne/2. Accordingly, U � (Ne/2), thus the inverse temperature given by

(10.18) is nonnegative, which means that the temperature may be positive or zero.

It also follows from the result that at very high temperatures, half of the molecules

were in the excited state – if higher excited states were not occupied.

Let us write the Avogadro number NA in the above function to get the molar
internal energy. By deriving it with respect to T, we get the molar heat capacity:

cV ¼ @u

@T

� �
V;N

¼ NAe
�1

e
e
kT þ 1

� �2 e e
kT
e
k

� 1

T2

� �
¼ ln

NAe
U

� 1

� �
: (10.20)

Resubstituting U and rearranging we obtain

cV ¼ NAe2

kT2

e
e
kT

e
e
kT þ 1

� �2 : (10.21)

Experimental data support that, if the heat capacity function cV is of the shape

predicted by the above equation (see Fig. 10.3), molecules have two low-lying

energy levels, and their higher excited states have much higher energy.

It was not only for demonstrative purposes that we discussed such relatively

simple systems; in a typical real-life case, combinatorial analogies lead to problems

too much difficult where O cannot be calculated. There is another possibility to

calculate O; the calculation by integrals of points on an isoenergetical surface in

multidimensional space modeling the microcanonical systems. However, the

integrals thus emerging cannot be calculated in more complicated cases either.
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This is the reason to calculate other entropy-like functions instead of entropy itself,

over different ensembles than the microcanonical one. As an example, we shall

discuss the canonical ensemble in the next section.

10.2 The Canonical Ensemble

The (single component) canonical ensemble6 is the mechanical model of a simple

thermodynamic system which is closed, has rigid diathermal walls, and is immersed

in a heat reservoir of constant temperature. The reservoir behaves as a thermostat,

keeping the temperature of the system constant even if heat would be absorbed or

released inside the system. Thus, the canonical ensemble – also called as an N, V, T
ensemble – consists of N particles enclosed in a constant volume V, having a

constant temperature T. Note that it can have any energy which is consistent with

these conditions. Accordingly, the elements of the ensemble are replicates of

N particles in a fixed volume V that have different energies. (We can also say that

the canonical ensemble consists of microcanonical ensembles as elements having

the same volume V and particle number N but different energy.) The canonical

ensemble can also be considered as a temporal succession of its elements; it is the

manifold of particles consistent with the condition of constant N, V, and T, but its
successive states – as a consequence of energy exchange with the thermostat – have

Fig. 10.3 Molar heat capacity cV in units of R as a function of temperature in units of k/e for a
system of two-state molecules

6The word canonical originates from the Greek noun kanon (measuring rod; in a figurative sense:

rule) via the Latin noun canon ¼ rule, whence the Latin adjective canonicus ¼ regular. The name

canonical ensemble was coined by Gibbs, who obviously considered the N, V, T ensemble as

“regular” and theN, V, E ensemble as “little regular”. This latter name is an allusion to the property

that microcanonical ensembles are included in a canonical ensemble.
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a constantly changing energy. The ergodic hypothesis is valid also for this ensem-

ble; the expected values of a random variable of thermodynamic interest over time

and that over the ensemble are the same.

Considering the reservoir (including the closed, constant-volume, and constant-

temperature inner subsystem) as an isolated system having constant volume, energy

and particle number, it can be modeled as a microcanonical ensemble. By doing so,

we can reduce the characterization of the canonical ensemble to that of the already

known microcanonical ensemble. The most important difference between the

microcanonical and canonical ensemble is that the probability of each state is

identical in the former, which is no more true in the latter; the probabilities of

different states are different. Using combinatorial methods based on the uniform

distribution of states inside the reservoir, we can derive the probability distribution

over the states in the canonical ensemble included. However, we shall discuss a

simple analogy first to illustrate this kind of calculation, and then we will generalize

the result for a canonical ensemble.

Let us consider the example of three dice, one of them black and the other two

white. The set of two white dice is the analog of the reservoir, the black one

corresponds to the “thermostated” system inside. The fixed energy of the entire

system containing both reservoir and the constant-temperature subsystem

corresponds to a fixed sum when throwing the three dice. We have to determine

the conditional probability of the values on the black die provided that the sum on

the three dice is always the prescribed value. Let us choose this value to be 12.

Table 10.1 summarizes the possible outcomes that fulfill this constraint. The results

are grouped according to the value on the black die (the “energy” of the subsystem).

As the sum can only be 12 given the actual value of the black die, there are as much

possibilities as listed in the second column of the table. We can read from the table

that there are altogether 25 different possibilities which have equal probabilities,

thus the probability of one actual set of values is 1/25. Accordingly, the conditional

probability of a given number on the black die is 1/25 times the number of

possibilities listed in the second column. This value is written in the column marked

“probability.”

The rule explored discussing the above example can be generalized as follows.

The probability of the state of a subsystem is equal to the total number of the states

Table 10.1 Conditional probabilities when throwing a black and two white dice provided that

the sum on the three dice is always 12

Black die 1st white /2nd white Possibilities Probability

1 5/6, 6/5 2 2/25

2 5/5, 4/6, 6/4 3 3/25

3 3/6, 6/3, 4/5, 5/4 4 4/25

4 4/4, 2/6, 6/2, 3/5, 5/3 5 5/25

5 1/6, 6/1, 2/5, 5/2, 3/4, 4/3 6 6/25

6 3/3, 1/5, 5/1, 2/4, 4/2 5 5/25

Sum 25 1
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of the reservoir (without the inner subsystem), compatible with the condition in

the case of this particular state, divided by the number of all the possible states

(of the entire system) compatible with the condition.

Let us apply this generalized rule for the case shown in Fig. 10.4, when the

energy of the subsystem is Ei, and the total energy (of reservoir plus subsystem) is

Etot ¼ Eres + Ei.

Let us denote the microcanonical partition function of the reservoir by Ores and

that of the entire system by Otot. The probability pi that the energy of the inner

subsystem is Ei can be calculated in the following way:

pi ¼ OresðEtot � EiÞ
OtotðEtotÞ : (10.22)

(To simplify notation, we dropped the variables N and V, which does not depend on
the index i.)

Let us substitute for Ores and Otot their values expressed as a function of entropy,

using the inverted function of (10.5):

pi ¼ e
Sres Etot�Eið Þ

k

e
Stot Etotð Þ

k

¼ e
Sres Etot�Eið Þ�Stot Etotð Þ

k : (10.23)

Let us denote the equilibrium energy of the inner subsystem (the expected value

of energy) as usual by U. Due to the additivity of entropy, we can write:

S Etotð Þ ¼ SðUÞ þ Sres Etot � Uð Þ: (10.24)

Fig. 10.4 An element of a

canonical ensemble having

energy Ei (inner system;
dashed rectangle), and the

microcanonical ensemble

containing it, having a fixed

energy Etot ¼ Eres + Ei

(entire system; solid
rectangle). The part of the
entire system outside the

dashed rectangle serves as an
energy reservoir having a

constant temperature Tres,
keeping the temperature of

the inner system also constant
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The entropy function Sres(Etot – Ei) can be expanded around the energy U:

SresðEtot � EiÞ ¼ SresðEtot � U þ U � EiÞ ¼ SresðUÞ þ @Sres
@U

U � Eið Þ þ ::::

(10.25)

We could write in place of .... the product of higher order derivatives of Sres and
the appropriate powers of the difference (U – Ei). However, as the expected value

U differs only slightly from the actual energy Ei, the second power of (U – Ei) is

already negligibly small compared to (U – Ei) itself, thus we can neglect higher

than first-order terms in the power series. This can be easily supported by various

arguments. First, we could choose an arbitrarily large reservoir ensuring that

Etot >> U, thus (U – Ei) << (Etot + Ei) also applies. Second, we know from ther-

modynamics that
@S

@U

� �
V;N

¼ 1
T , from which it follows that the energy exchanged

between the inner system and the reservoir is exactly 1
T dU. Truncating the power

series after the first derivative and writing 1
T in place of

@S

@U

� �
V;N

, we get the

following equation:

Sres Etot � Eið Þ ¼ Sres Etot � Uð Þ þ U � Ei

T
: (10.26)

Using again the additivity of the entropy, we can write the identity:

Stot Etotð Þ ¼ SðUÞ þ Sres Etot � Uð Þ: (10.27)

Let us substitute the above expressions of Sres and Stot into the exponent of the

expression (10.23) of pi:

Sres Etot � Eið Þ � Stot Etotð Þ ¼ U � Ei

T
� SðUÞ: (10.28)

After some rearrangement, we get the following relation:

U � Ei

T
� SðUÞ ¼ �Ei

T
þ U � TSðUÞ

T
: (10.29)

We can clearly see here what we could presuppose from our knowledge of

phenomenological thermodynamics; there are no properties concerning either the

reservoir or the entire system in this relation, only those concerning the inner

system, that is, the canonical ensemble. Substituting the exponents into (10.23),

we can write the probability density function we were looking for:

pi ¼ e�
Ei
kT � eU�TSðUÞ

kT : (10.30)
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Conform to the old habit in statistical thermodynamics, we can somewhat

simplify the notation by introducing b ¼ 1

kT
. Let us also substitute the well-

known function F ¼ U – TS. Thus, the probability distribution can be rewritten as:

pi ¼ e�bEi � ebF: (10.31)

Although we do not know the statistical expression for the free energy function

F, all other variables are known from statistical considerations, thus we can express

F from the above equation. To this end, let us make use of the fact that the sum of

the probability density for the entire sample space (all possible states) is unit by

definition, thus:

X
8i

pi ¼ebF �
X
8i

e�bEi ¼ 1: (10.32)

Let us introduce the following notation:

X
8i

e�bEi ¼ Q: (10.33)

By inserting this into (10.32) and rearranging, we get:

ebF ¼ 1

Q
: (10.34)

Taking the logarithm of both sides and rearranging, we obtain:

F ¼ � 1

b
lnQ: (10.35)

Let us resubstitute now kT in place of 1/b, and write explicitly the variables

which determine Q (and also F):

FðT;V;NÞ ¼ �kT lnQðT;V;NÞ: (10.36)

This result is the fundamental equation determining the function F(T, V, N).
Accordingly, (10.36) provides a “prescription” as to the application of the canonical

ensemble in statistical thermodynamics: calculate the canonical partition function7

Q as a function of the states i and the energy of these states Ei; the free energy F can

be readily calculated as a function of Q.

7The German name of the canonical partition function is Zustandsumme, literally meaning “sum

of states,” which has been given by Clausius. Following him, some authors still designate the

canonical partition function by Z.
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Comparing the relation ebF ¼ 1/Q and (10.31), we can write the probability

density of the states of the canonical ensemble in a simpler form:

pi ¼ e�bEiP
8i
e�bEi

¼ 1

Q
e�bEi : (10.37)

The function F can also be written in a form similar to the microcanonical

entropy. As we can read in the appendix A2.1, the Massieu function J ¼ �F/T is an

entropy-like function; it is the partial Legendre-transform of the entropy function

S(U, V, N) with respect to the variable U. Thus, we can write from (10.36) its

entropy-representation counterpart:

� F

T
¼ k lnQ: (10.38)

The structure of this equation is similar to that of (10.5) specifying entropy.

Once we know the canonical probability density function, we can calculate the

expectation value of the energy as well:

U ¼
X
8i

piEi ¼
X
8i

Eie
�bEiP

8i
e�bEi

¼
P
8i
Eie

�bEi

P
8i
e�bEi

¼ � @Q

@b
� 1
Q
: (10.39)

In the last step, we have made use of the identity that the derivative of e�bEi with

respect to b is Eie
�bEi , and that the sum of the derivatives is equal to the derivative

of the sum (which is Q). Using the chain rule to change the function to be

differentiated for ln Q, we obtain that the expectation value U of the energy is simply

the derivative of the function ln Q with respect to b:

U ¼ � @ lnQ

@b
: (10.40)

As the notations using kT or b occur sometimes alternatively, it is also useful

to change from a derivative with respect to b to the one with respect to T. Based on
the chain rule and using the identity T ¼ 1/kb, we can obtain the following relation:

d

db
¼ dT

db
d

dT
¼ � 1

kb2
d

dT
¼ �kT2 d

dT
: (10.41)

Applying this for the particular case of (10.40), we obtain the internal energy

in the following alternative form:

U ¼ kT2 @ lnQ

@T
: (10.42)
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Note that this can also be obtained from the expression (10.36) applying the

well-known thermodynamic relation

U ¼ Fþ TS ¼ F� T
@F

@T

� �
V;N

: (10.43)

10.2.1 Calculation of the Canonical Partition Function
from Molecular Data

We have switched to the canonical ensemble to treat thermodynamic problems

hoping that the calculation of Q will be simpler than the calculation of O on a

microcanonical ensemble. To show this simplicity, we have to consider the follow-

ing. If the states of individual molecules contained in the canonical ensemble are

independent of each other, their energy is also independent, thus the energy Ei can

be written as the sum of the energies of the (independent) molecular modes ei. The
condition of this independence is that there should not be any interaction between

different modes; that is, the energy of any mode should be independent of the

occupancy of other modes. Using a simple and (hopefully) easy-to-follow notation,

this additivity can be written as:

Ei ¼ e1ð j1Þ þ e2ð j2Þ þ e3ð j3Þ � � � þ eNð jNÞ: (10.44)

Here, j1, j2, . . . , jN denote the state of individual molecules and ei(ji) is their
energy in the element of the canonical ensemble whose energy is Ei. Putting ji-s as
subscripts, the partition function can be written as:

Q ¼
X
8i

e�bEi ¼
X
8jk

e�be1j1�be2j2�...�beNjN ¼
X
8jk

e�be1j1 � e�be2j2 � ::: � e�beNjN
� �

:

(10.45)

The sum of the products of exponential functions can be written as the product

of the sum of exponential functions:

X
8jk

e�be1j1 � e�be2j2 � ::: � e�beNjN
� � ¼ XM1

j1¼1

e�be1j1

 ! XM2

j2¼1

e�be2j2

 !
� � �

XMN

jN¼1

e�beNjN

 !
:

(10.46)

The summations with respect to j1, j2, . . . , jN are done for the molecular states of

each molecule from 1 to M1, M2, . . . , MN; that is, for all the possible states of the

molecules. (For identical molecules, these limits are obviously identical, but for a
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multicomponent system, they are identical for the same species only. This offers the

possibility to extend statistical thermodynamics for multiple component systems.)

Let us denote the sums in parentheses by qk and call them as the molecular
partition functions of the species k:

qk ¼
X
8j

e�bekj : (10.47)

With the help of this molecular partition function, we can write the partition

function of the canonical ensemble using (10.45) and (10.46):

Q ¼
YN
k¼1

qk: (10.48)

We can state that the partition function of the ensemble can be obtained as

the product of the molecular partition functions calculated on the basis of the

assumption of independent molecular modes.

10.2.2 Statistical Thermodynamics of the Einstein Solid
and the System of Two-State Molecules
in Canonical Representation

Using the previously discussed examples, we shall demonstrate the simplicity of

thermodynamic calculations in the canonical representation compared to that in the

microcanonical representation. Let us treat again the Einstein solid. The energy of

vibrational molecular modes in this model is n�ho0, with n running from 0 to

infinity. As vibrations are the only possible modes, the molecular partition function

can be written as:

q ¼
X1
n¼0

e�nb�ho0 : (10.49)

The sum is exactly that of a geometric series with a quotient e�b�ho0 :

q ¼ 1

1� e�b�ho0
: (10.50)

The vibrational modes are independent of each other, thus we can calculate the

total partition function of the ensemble as the product of the 3N identical molecular

partition functions:

Q ¼ 1

1� e�b�ho0

� �3N

: (10.51)
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From this, we can readily calculate the fundamental equation providing the free

energy function F:

F ¼ �kT lnQ ¼ 3NkT ln 1� e�b�ho0
� � ¼ 3nRT ln 1� e�

�ho0
kT

� �
: (10.52)

Based on the thermodynamic relation S ¼ �(dF/dT)V,N, we can also calculate

the entropy function what is identical to that obtained for the extensive entropy

from (10.12):

S ¼ 3kN ln 1þ U

3N�ho0

� �
þ kU

�ho0

ln 1þ 3N�ho0

U

� �
: (10.53)

From the above discussion, it is obvious that the calculation of F is much

simpler in the canonical representation than the calculation of entropy in the

microcanonical representation. We can also recognize that, if there were not only

one possible frequency in the crystal but more, the combinatorial calculations were

rather complicated, while the canonical partition function is easy to calculate.

Let us discuss now the other previous example, the two-state system in the

canonical representation. In this case, all molecules have two states whose

occupancies are independent of each other. The energy of the ground state is 0,

while that of the excited state is e. Accordingly, we can write the molecular partition

function as follows:

q ¼
X2
i¼1

e�
ei
kT ¼ e0 þ e�

e
kT: (10.54)

From this, the partition function of the ensemble is easy to obtain:

Q ¼ qN ¼ 1þ e�
e
kT

� �N
: (10.55)

The corresponding equation of state can be written as:

F ¼ �kT lnQ ¼ �NkT ln 1þ e�
e
kT

� �
: (10.56)

Using thermodynamic relations, we can get other potential functions as well. For

the internal energy, we have:

U ¼ � @ lnQ

@b
¼ �N

1

1þ e�bT �eð Þe�be ¼ Nee�be

1þ e�beð Þ : (10.57)
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From this, we can deduce the entropy function according to the relation:

S ¼ �F

T
þ U

T
¼ �F

T
� 1

T

@ lnQ

@b
: (10.58)

Substituting the above expression of U into (10.58), we readily get the entropy

function:

S ¼ Nk ln 1þ e�
e
kT

� �þ Ne
T

e�
e
kT

1þ e�
e
kT

� � : (10.59)

It is obvious also in this case that, if there were 3 (4, 5, etc.) accessible states

for the molecules instead of 2, combinatorial calculations were quite involved,

while the canonical partition function and hence the fundamental equation

providing the function F(T, V, N) is easy to calculate in these cases as well.

10.2.3 The Translational Partition Function. Statistical
Thermodynamics of a Monatomic Ideal Gas

Gas molecules can have the following modes: translational modes, rotational

modes, vibrational modes, and electronic modes. (We could consider in principle

also nuclear modes, but to change their state would need enormous amounts of

energy, which is not available at normal earthly conditions, thus we do not need to

take them into account.)

Provided that the mentioned four modes of gas molecules are independent from

each other, the partition function of the canonical ensemble can be factorized in a

form Qtrans � Qrot � Qvib � Qel. Obviously, the molecular partition function can

be factorized the same way: qtrans � qrot � qvib � qel, and the partition function of
the ensemble can be calculated from this function. Consequently, to get the

partition function, we can first calculate the molecular translational, rotational,

vibrational, and electronic partition functions as its contributions.

Let us begin with the translational contribution. In an ideal gas, translational

energies of the molecules are independent of each other, thus it is sufficient (in a

single-component system) to consider the translational states and their energies.

From quantum mechanics, we have the solution of the problem “particle in a box”.

For a one-dimensional box of length L, the translational energy is

en ¼ n2h2

8mL2
; (10.60)
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where the quantum number n – an integer number – runs from 1 to infinity. Let us

chose the energy scale so that the lowest energy level (n ¼ 1) be zero. Let us denote

this energy by e, whose value is:

e ¼ h2

8mL2
: (10.61)

As this is the zero of the energy scale, the energy depending on then translational

quantum number n can be written as en ¼ (n2 – 1)e, and the molecular translational

partition function as:

qtrans1D ¼
X1
n¼1

e�b n2�1ð Þe: (10.62)

Translational energy levels are very much close to each other in a macroscopic

system, thus we can consider the quantum number n as a continuous variable and

can replace the summation by integration:

qtrans1D ¼
ð1
1

e�bðn2�1Þedn ¼
ð1
0

e�bn2edn: (10.63)

To evaluate the integral, let us change the variable according to the substitution

x2 ¼ bn2e, from which n can be explained as n ¼ x=
ffiffiffiffiffi
be

p
. Using the relation

dn

dx
¼ 1ffiffiffiffiffi

be
p ; (10.64)

we can substitute dx=
ffiffiffiffiffi
be

p
in place of dn, thus we can write:

qtrans1D ¼
ð1
0

e�x2 dxffiffiffiffiffi
be

p ¼
ffiffiffiffiffi
1

be

s
�
ffiffiffi
p

p
2

¼
ffiffiffiffiffiffiffi
p
4be

r
: (10.65)

(We have substituted the value of the improper integral of the function e�x2

between 0 and infinity, which is
ffiffiffi
p

p
2= .) Resubstituting the expression (10.61) of e,

we get the one-dimensional molecular translational partition function:

qtrans1D ¼
ffiffiffiffiffiffiffiffiffi
2pm
h2b

s
� L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmk T

h2

r
� L: (10.66)

From this expression, we can derive the three-dimensional translational partition

function, knowing that the kinetic energy of the translational motion in one
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direction is independent from those in perpendicular directions. Thus – denoting the

length of the edges of a three-dimensional box by X, Y and Z – the kinetic energies

of motions in perpendicular directions add as enX ; nY ; nZ ¼ enX þ enY þ enZ and

the three-dimensional translational partition function is the product of the one-

dimensional partition functions; qtrans ¼ qX � qY � qZ:

qtrans ¼ 2pmk T

h2

� �3 2=

� V; (10.67)

where V ¼ XYZ is the volume of the box. The result is valid for a box of any shape,

only the volume V matters. Let us introduce the symbol L for the thermal
wavelength:

L ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkT

p : (10.68)

Applying this notation, the molecular translational partition function can be

written in the short form:

qtrans ¼ V

L3
: (10.69)

The value of the molecular translational partition function is quite large; in a gas

of 100 cm3 containing O2 molecules at 25�C, L ¼ 17.8 pm and qtrans has the value
of 1.773 � 1030.

In monatomic gases (e.g., noble gases), there are no other motions of molecules

possible but translation. Their electronically excited states are available only at very

high energies, thus we can easily calculate the fundamental equation of a mon-

atomic ideal gas at not too high temperatures.

Following the procedure explained before to get the partition function Q, we
should calculate the product of the molecular partition functions of N molecules.

However, this would yield an enormously large number of which we can easily see

that it is not the correct value. The previously derived calculation is namely valid

only for distinguishable molecules – as for example in a crystal where individual

molecules are localized. Gas molecules can freely move. Thus, if we interchange

two molecules, it is still the same state; consequently, we do not count it as a distinct

state. This suggests that the result of the products of molecular partition functions

should be divided by the number of the possible interchanges of molecules that do

not lead to a new state. In a gas, this is the number of permutations without

repetition of N elements, that is, N!. Thus, the proper canonical partition function

of a pure monatomic ideal gas containing N atoms is8:

8Calculating the partition function with quantum-mechanical methods for the macroscopic states,

the number of states will be correct; we do not need to include an extra division by N!.
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Q ¼ 1

N!
qtransð ÞN ¼ VN

N!

2pmkT
h2

� �3N
2

: (10.70)

To calculate the fundamental equation, let us express the logarithm of the

partition function applying the usual Stirling formula:

lnQ ¼ N lnV � N lnN þ N þ N ln
2pmkT
h2

� �3=2

: (10.71)

Rearranging and multiplying by – kT we get the fundamental equation:

F T;V;Nð Þ ¼ �NkT 1þ ln
V

N

2pmkT
h2

	 
3=2 !" #
: (10.72)

To obtain the equations of state, let us apply usual thermodynamic relations:

P ¼ � @F

@V

� �
T;N

¼ NkT
1

V
¼ nRT

V
: (10.73)

S ¼ � @F

@T

� �
V;N

¼ nR
5

2
þ ln

V

N

2pmkT
h2

	 
3 2=
 !" #

: (10.74)

Differentiating the function F(T, V, N) with respect to N yields the chemical

potential referred to one single particle, thus we need to multiply it by the Avogadro

constant to get the familiar molar value:

m ¼ NA
@F

@N

� �
T;V

¼ �RT ln
2pmkT
h2

	 
3 2=
 !

: (10.75)

The internal energy can be calculated using the relation U ¼ F þ TS, leading to
the entropy-based thermal equation of state:

U ¼ 3

2
nRT: (10.76)

Inverting this function, we get the temperature T as a function of U:

T ¼ 2U

3nR
¼ 2U

3Nk
: (10.77)

The rationale behind this is that the wave function for the macroscopic state does not change when

interchanging coordinates of gas molecules, thus it is the same state.
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Inserting this in the expression (10.74) of entropy, we get the fundamental

equation specifying the function S(U, V, N):

S U;V;Nð Þ ¼ nR
5

2
þ ln

V

N

4pmU
3h2N

	 
3 2=
 !" #

: (10.78)

This relation is called the Sackur–Tetrode9 equation, commemorating the two

scientists who first derived it. It is worth mentioning that the derivative of the right-

hand side of (10.76) with respect to T provides the constant-volume heat capacity of

the monatomic ideal gas

CV ¼ n
3

2
R; (10.79)

which is also in accordance with experimental results.

10.2.4 Calculation of the Rotational, Vibrational,
and Electronic Partition Functions

The calculation of other contributions to the partition function can be performed

similarly to the method we used to calculate the translational contribution. Thus, to

calculate the rotational partition function, we need to know the energy of molecular

rotations. The energy of a linear (rigid) heteronuclear rotor – for example, an HCl

molecule – can be calculated using quantum mechanics. The rotational constant is

B ¼ h

8p2cI
; (10.80)

where I is themoment of inertia and c the velocity of light in vacuum. The energy of

the rotor can be written as

eBðJÞ ¼ hcBJðJ þ 1Þ; (10.81)

whence the corresponding partition function is

qR
lin ¼

X1
J¼0

2J þ 1ð Þe�bhcBJ Jþ1ð Þ: (10.82)

9Hugo Martin Tetrode (1895–1931) Dutch theoretical physicist and Otto Sackur (1880–1914)

German chemist independently derived the fundamental equation of the monatomic ideal gas and

published their results in 1912. The result was named later after the two scientist. (Both died at an

early age; the cause was tuberculosis for Tetrode and an unexpected explosion while developing

explosives to be used in a grenade for Sackur.)
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An unusual feature of this result is the factor (2J þ 1) appearing in the sum; we

did not have anything similar in the calculations before. The reason for this factor is

the following. When calculating the partition function, we sum with respect to the

index J, which is the rotational quantum number. It is known from the quantum-

mechanical description of rotation that energy levels belonging to the same rota-

tional quantum number J have a degeneracy of 2J þ 1. This means that there are

2J þ 1 rotational states of energy eB(J) at the same energy level, sharing the same

quantum number J. The partition function is defined as the sum over states, thus all
these 2J þ 1 rotational states should be added to the sum. However, as their energy

is the same, we can write one exponential term having the exponent of �eB(J),
multiplied by (2J þ 1), the degeneracy of the energy level. (The procedure is

similar in case of other degenerate levels.)

To calculate the sum, we approximate it again with an integral. This can be done

if hcB << kT, (hcB is the energy of the ground state, J ¼ 0); in this case, the values

of the exponential functions with neighboring J are so close to each other that

the integrand can be considered as a continuous function of J. Let us rewrite

the summation as an integral, make the substitution J(J þ 1) ¼ x, from which

dx/dJ ¼ 2J þ 1, i.e., dJ ¼ dx/(2J þ 1). Thus:

qRlin ¼
ð1
0

2J þ 1ð Þe�bhcBJ Jþ1ð ÞdJ ¼
ð1
0

2J þ 1ð Þe�bhcBx dx

2J þ 1
: (10.83)

The integration can readily be done:

ð1
0

e�bhcBxdx ¼ � 1

bhcB
e�bhcBx

	 
1
0

¼ 0þ 1

bhcB
: (10.84)

Thus, the molecular partition function of the linear rotor is

qRlin ¼
kT

hcB
: (10.85)

The heteronuclear linear rotor (e.g., the molecule HCl) has two rotational

degrees of freedom. Accordingly, it has two independent rotational axes, with the

same rotational constant, thus the same rotational energy.

A general rotor (e.g., a multiatomic molecule) has three rotational degrees of

freedom, thus three independent rotational axes. Let us denote the corresponding

rotational constants by A, B, and C. The rotational partition function of the general

multiatomic molecule can then be written as:

qR ¼ 1

s
kT

hc

� �3 2= ffiffiffiffiffiffiffiffiffiffiffiffi
p

ABC
:

r
(10.86)
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The Greek letter s denotes the rotational symmetry factor of the molecule. Its

significance is that, when the molecule rotates through 360�/s, it results in a

configuration that is indistinguishable from the one from which it started, and the

same configuration occurs s times during a complete rotation. These identical

configurations cannot be considered as different states; therefore, the number of

states is less, and thus the partition function should also be diminished. For the

ammonia molecule, s ¼ 3, while for the methane molecule, it is 12, as this

molecule has four threefold rotational axes. Note that, for a homonuclear linear

rotor, two indistinguishable rotational states occur through 180� rotations. Thus,

(10.85) should be modified by a division by 2 if applied for such molecules.

At ambient temperatures, many rotational excited states are occupied. Accord-

ingly, the rotational partition function is typically of the order of magnitude of a few

thousands.

The vibrational partition function can also be written based on the vibrational

energies calculated from quantum mechanics. The energy of a harmonic oscillator

can be written as

ev ¼ vþ 1

2

� �
hn; (10.87)

where the Latin letter v is the vibrational quantum number, while the Greek letter n
is the frequency of vibration. (This can be the solution of the Schr€odinger equation
of the molecular oscillator, or it can be determined experimentally by infrared

spectroscopy.) By choosing the zero of the energy scale as

e0 ¼ 1

2
hn ¼ 0; (10.88)

the energy of the oscillator having the quantum number v is ev ¼ vhn and the

partition function

qV ¼
X1
v¼0

e�bvhn ¼
X1
v¼0

e�
hn
kT

� �v
: (10.89)

We can recognize that – similarly to (10.49) – this is a geometric series with the

quotient e�
hn
kT . The sum of the series is the molecular partition function of the

vibration of frequency n:

qV ¼ 1

1� e�
hn
kT

: (10.90)

The partition function has the same form for each (harmonic) normal vibration,

thus the total vibrational partition function can be written as

qV ¼ qVð1Þ � qVð2Þ � ::: � qVðkÞ; (10.91)
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where the kmultiplicative terms comprise all the possible normal vibrational modes

of the molecule. A molecule consisting of N atoms can be considered as a system of

N point masses, thus it has 3N degrees of freedom. Of these, 3 is translational, 2 is

rotational in case of a linear molecule, but it is 3 for a nonlinear multiatomic

molecule. Consequently, a molecule has 3N – 5 vibrational degrees of freedom if

it is linear, and 3N – 6 if it is nonlinear; that is, so many normal vibrational modes.

Vibrational excited states have much larger energy level spacing than rotational

ones, thus the value of qV(i)’s at ambient temperatures is in the range 1–3.

The electronic partition function of molecules can also be calculated knowing

the energy of the electronic ground state and the excited states. For the majority of

molecules, the electronically excited state is so high that its contribution at ambient

and not too much higher temperatures can be neglected to the partition function. As

a result, we can assume that qE ¼ 1, except for molecules whose electronic ground

state is degenerated. For these latter, the molecular electronic partition function is

identical to the electronic degeneracy:

qE ¼ gE: (10.92)

An interesting exception from this rule is the case of molecules whose excited

electronic states’ energy is very much close to that of the ground state. For example,

the NO molecule has two degenerate ground states and two degenerate excited

states with only slightly higher energy. Considering its ground state energy as the

zero level, its molecular electronic partition function can be written as

qENO ¼ 2þ 2e
�
e	

kT ; (10.93)

where e* is the energy of the excited state with respect to the ground state. (Using

the same nomenclature as for the two-state system, we could call this as a “double-

degenerate two-state system”.)

Having calculated all the contributions to the molecular partition function in an

ideal gas, we can write the partition function of the ensemble in the following form:

Q ¼ 1

N!
qT � qR � qV � qE� �N

: (10.94)

If the ideal gas consists of K components, where there are Nj molecules of

component j in the ensemblemodeling the gas, the partition function can bewritten as:

Q ¼
YK
j¼1

1

Nj!
qTj � qRj � qVj � qEj
� �Nj

: (10.95)

This formula can be used to calculate polyatomic, multicomponent ideal gases as

well. Of course, the actual form of the molecular partition function depends on the

structure of molecules.
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10.2.5 Statistical Characterization of the Canonical Energy

Using the canonical probability density function (10.37),

pi ¼ e�
Ei
kTP
e�

Ei
kT

;

we have calculated the expectation value of the energy (the internal energy).

According to (10.40), this can be given as

MðEÞ ¼ U ¼ � @ lnQ

@b
:

With the help of the probability density function, we can also calculate the

variance of the internal energy. By definition, this is the expectation of the square of

deviation from the expectation of the energy, and can be written as:

s2ðEÞ ¼ M E�MðEÞ½ �2
� �

¼ M E2 � 2EMðEÞ þ MðEÞ½ �2
� �

¼ M E2
� �� MðEÞ½ �2:

(10.96)

Using the definition of the expectation value, we can calculate this the following

way:

s2ðEÞ ¼
X

E2
i

e�bEi

Q
�

X
Ei

e�bEi

Q

� �2

: (10.97)

The second term in this equation is the square of the expectation value that we

already know:

U2 ¼ � @ lnQ

@b

� �2

¼ 1

Q2

@Q

@b

� �2

: (10.98)

Taking into account the identity Q ¼P e�bEi , we can see that

@2Q

@b2
¼
X

Ei
2e�bEi ; (10.99)

thus we can write for the variance:

s2ðEÞ ¼ 1

Q

@2Q

@b2
� 1

Q2

@Q

@b

� �2

: (10.100)
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It can be seen that this is exactly the derivative of M(E) ¼ U:

@MðEÞ
@b

¼ @

@b
� @ lnQ

@b

� �
¼ @

@b
� 1

Q

@Q

@b

	 

¼ � 1

Q

@2Q

@b2
þ 1

Q2

@Q

@b
@Q

@b
: (10.101)

As a conclusion, we can write the variance of energy in the following form:

s2ðEÞ ¼ � @MðEÞ
@b

¼ � @U

@b
: (10.102)

By changing from the derivation with respect to b to the derivation with respect

to T, as shown in (10.41), we can rewrite this as:

s2ðEÞ ¼ kT2 @U

@T

� �
V;N

¼ kT2NcV : (10.103)

The standard deviation (or mean fluctuation) of the energy is the square root of

the above expression. Thus, we can write the fluctuation relative to the expectation
value as:

s
MðEÞ ¼

ffiffiffiffiffi
s2

p

U
¼ 1

U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT2NcV

p
: (10.104)

The extensive internal energy U in the denominator is proportional to the particle

number N, thus the relative fluctuation is inversely proportional to the square root of

N. With increasing N, U increases proportionally, while its relative fluctuation

decreases proportionally to 1
ffiffiffiffi
N

p�
. As the particle number goes to infinity, the

relative fluctuation of energy goes to zero. Recalling that energy is fixed in a

microcanonical ensemble, we can state that in case of sufficiently large number of

particles, thermodynamic properties calculated on a canonical ensemble should be

the same as those calculated on a microcanonical ensemble. Let us see what is the

number of particles above, of which we can neglect the canonical fluctuation of energy.

In a body of macroscopic size, the number of particles is of the order of

magnitude of 1023, whose square root is greater than 1011. Accordingly, the

fluctuation (or “uncertainty”) of an internal energy of 100 kJ/mol is less than

10–9 kJ/mol, or 0.000000001 kJ/mol. This difference is so small that it cannot

be determined using macroscopic methods; thus, the energy fluctuation can be

neglected macroscopically.

We have stated that the canonical distribution over the states i is an exponential

function of the energies of these states Ei:

pi ¼ e
�
Ei

kT

Q
:
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Let us calculate from this the multiparticle energy distribution (independently of

the microstate of the ensemble, the distribution of the energy only). The value of the
microcanonical partition function O(E) means that the element of the canonical

ensemble in which the energy is exactly E can be realized in O(E) different

microstates. In other words, the energy level E has an O(E)-fold degeneracy.

Consequently, we should add that much (equal) probability contributions to get

the probability density of energy E:

PðEÞ ¼ OðEÞ e
�bE

Q
(10.105)

The quantity O(E) is called the density of states in this respect, and it is

proportional to EN. Thus, concerning the probability of a macroscopic energy E,
it contains the constant factor 1/Q, the density of states O(E) (a rapidly increasing

function of energy) and the Boltzmann factor e–bE (a rapidly decreasing function of
energy). The probability density function of the macroscopic energy E is the

product of these two functions divided by Q; it is a very sharp peak at the

intersection of the rapidly increasing/decreasing functions close to their zero

values. As this function emerges as a result of a large number of means of molecular

energy-distributions, according to the central limit theorem, it is normally

distributed, thus has the shape of a Gaussian function.

Note that while the probability density function of the multiparticle energy (i.e.,

the macroscopic energy of the canonical ensemble) is the sharp peak shown in

Fig. 10.5, the (nondegenerate) energy levels of individual particles are distributed

according to the Boltzmann distribution. In terms of the molecular energy ei, this
can be written as:

pðeiÞ ¼ 1

q
e�

ei
kT: (10.106)

EM(E)

P(E)
e–bE aEN

s (E)

Fig. 10.5 Probability density

function P(E) of the
multiparticle energy in a

canonical ensemble
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Figure 10.6 shows the density function of the single-particle energy at three

different temperatures. As we can expect, lower-energy states are more populated

at lower temperature, while increasing the temperature, higher-energy states get more

and more populated. (At infinitely high temperature, the distribution would have been

uniform.) The integral of the probability density function should be always unit, thus

the continuous curves are lower at high temperatures close to zero energy, and higher

at low temperatures. If the distribution is discrete, the sum of the possible discrete

values should give unit. Thus, their height might change if the “norm” q changes, but
their ratio is always the same at two different but fixed energies ei and ej:

pðeiÞ
pðejÞ ¼

e�
ei
kT

e�
ej
kT

¼ e�
ei�ej
kT : (10.107)

This ratio is the same for each particle, thus the above ratio also holds for the

number of corresponding particles:

NðeiÞ
NðejÞ ¼ e�

ei�ej
kT : (10.108)

10.2.6 The Equipartition Theorem

The distribution of energy over the molecular degrees of freedom has an interesting

general property. To explore this property, let us calculate the expectation value of

the energy of different molecular modes in analogy of (10.40), using the single-

particle energy distribution (10.106):

MðeiÞ ¼
X

eipi ¼ � @ ln q

@b
: (10.109)

T1
p (ei)

ei

T2

T1<T2<T3

T3

Fig. 10.6 Probability density

function p(ei) of the single-
particle energy in a canonical

ensemble
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For the translational mode of 3 degrees of freedom, the molecular partition

function can be written as:

qT ¼ 2pmkT
h2

� �3=2

V ¼ 2pm
bh2

� �3=2

V: (10.110)

By derivation with respect to b, we obtain the result:

� @ ln qT

@b
¼ � @

@b
lnV þ 3

2
ln
2pm
h2

� 3

2
ln b

	 

¼ 3

2

1

b
¼ 3

2
kT: (10.111)

For the linear rotor of 2 rotational degrees of freedom, the molecular partition

function has the form

qR ¼ kT

hcB
¼ 1

b
� 1

hcB
; (10.112)

from which the expectation value of the energy is the following:

� @ ln qR

@b
¼ � @

@b
� ln b� ln hcBð Þ½ � ¼ 1

b
¼ kT: (10.113)

For the molecular vibration of 1 vibrational degree of freedom, the molecular

partition function is

qV ¼ 1

1� e�hn
kT

¼ 1

1� e�bhn ; (10.114)

which leads to the expectation value of energy as follows:

� @ ln qV

@b
¼ � @

@b
� ln 1� e�bhn� ��  ¼ 1

1� e�bhn � hne�bhn ¼ hn
ebhn � 1

¼ hn

e
�hn
kT � 1

:

(10.115)

Comparing this result to the expectation of translational and rotational energy,

we can see that these latter are multiples of kT, while the expectation of the

vibrational energy has a different form. However, if kT >> hn, the exponent in

the function is much less than unit, thus we can replace the function to a good

approximation by its power series, dropping higher than first-order terms. The

approximation can be written as ebhn ffi 1� bhn, from which the expectation of

the vibrational energy can be calculated in the following form:

hn
1þ bhn� 1

¼ 1

b
¼ kT: (10.116)
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Thus, applying the high-temperature approximation, the expectation of the

vibrational energy is also kT, provided that the vibrational energy hn is much less

than kT.
Let us summarize the above results in Table 10.2, showing also classical

mechanical expressions for the calculation of the energy of respective motions.

Writing the expectation value of the energy as multiples of ½ kT, we can observe

that it is the product of the number of degrees of freedom and ½ kT for translation

and rotation, while it is twice this value for vibration.

Observing the classical mechanical expressions for the calculation of the respec-

tive energy, we can state that the energy of the translational motion of the molecule

of mass m and a velocity v in the given direction is ½ mv2. We can see a similar

structure in case of the rotational energy; the momentum of inertia I replaces the
mass, the angular velocity o replaces the translational velocity, and the energy of

rotation per degree of freedom is ½ Io2. In the expression for the vibrational energy

of 1 degree of freedom, there are two quadratic terms; ½ mv2 describes the kinetic
energy and ½ kx2 describes the potential energy. The sum of these two terms is the

total energy of vibration. In the light of these observations, we can generalize that

for all (classical mechanical) quadratic terms, the expectation value of molecular

energy is ½ kT, at least at high enough temperature. This is called the equipartition
theorem.

An interesting consequence of this theorem is the expression for the heat

capacity, which is the derivative of the expectation of energy with respect to

temperature:

@MðEÞ
@T

¼ CV : (10.117)

Writing this derivative for the sum of the energy terms shown in the table,

relative to 1 mol, we get:

cV ¼ 1

2
R 3þ nR þ 2nVð Þ: (10.118)

According to this result, we can have information concerning the structure of the

molecules from the molar heat capacity. If the molar heat capacity is 3/2 RT,
the particles of the gas have only translational degrees of freedom, thus they are

Table 10.2 Expectation value of the energy of different molecular modes as a function of

temperature

Molecular mode

Classical mechanical

expression for the energy

Expectation

of energy

Expressed in terms

of degrees of freedom

Translation 1
2
m v2x þ v2y þ v2z

� �
3
2
kT 3 � 1

2
kT

Rotation 1
2

I1o2
1 þ I2o2

2

� �
2
2
kT nR � 1

2
kT

Vibration 1
2

mv2x þ kx2
� �

2
2
kT 2 nV � 1

2
kT
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monatomic molecules. If cV ¼ 5/2 RT, molecules have a linear structure, and

vibrations do not play any role in the heat capacity. If cV is greater than 5/2 RT,
vibrational modes also contribute to the heat capacity. The greater the molar heat

capacity with respect to 5/2 RT, the more the number of vibrational degrees of

freedom can be. Prior to the development of infrared and Raman spectroscopy –

which enable to identify vibrational modes of molecules, heat capacity

measurements often helped to determine the structure of molecules.

10.3 General Statistical Definition and Interpretation

of Entropy

Based on the expressions for the entropy on a microcanonical and a canonical

ensemble, we might think that the interpretation and derivation of entropy is

different on these two ensembles. However, it can be shown that entropy can be

derived quite generally as a well-determined expectation value for any distribution

according to the following expression:

S ¼ �kMðln piÞ ¼ �k
X
8i

pi ln pi: (10.119)

Obviously, entropy is the negative of the expectation of the logarithm of the

probability density function multiplied by a constant. (The constant k only defines

the scale of entropy.) The definition could have been written for a continuous

distribution as well – by changing summation for integration – but the states in

statistical thermodynamics are always discrete, in accordance with quantum

mechanics, thus it is enough to deal with the formula of (10.119).

Let us first see whether the microcanonical entropy can be calculated this way,

by substituting the probability density function pi ¼ 1/O into (10.119):

�k
XO
i¼1

pi ln pi ¼ �k
XO
i¼1

1

O
ln

1

O
¼ �k

1

O

XO
i¼1

�lnO ¼k
1

O
� O lnO ¼ k lnO:

(10.120)

This result is in fact identical to the entropy calculated in (10.5).

Let us make the calculation using this time the canonical probability density

function pi ¼ 1
Q e

�bEi :

�k
X

pi ln
1

Q
� bEi

	 

¼ k

X
pi lnQþ k

X
pibEi ¼ k lnQþ kb

XEie
�bEi

Q
:

(10.121)
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To calculate the result, we have made use of the fact that ln Q is not a random

variable (it does not depend on the index i), thus its expectation value is itself. As to
the second term, we have substituted b, which can be factored out from the

summation. The first term thus yields the Massieu function J ¼ �F/T, while

the second term is the internal energy U (the expectation of Ei) divided by the

temperature T :

k lnQþ k
1

kT

X
Ei

e�bEi

Q
¼ �F

T
þ U

T
: (10.122)

From the known relation F ¼ U – TS, it is clear that the result is the entropy

again.

We can frequently encounter the common statement that “entropy is the measure

of disorder”. As a matter of fact, we do not need this “explanation”. We know

entropy very well and can also calculate it from the postulates of (macroscopic)

thermodynamics, from the results obtained in statistical thermodynamics, and in a

general way, from the above definition of (10.119). Thus, entropy is a uniquely

determined quantity. Let us examine, in what sense we can call it the “measure

of disorder”. It should be stated that – contrary to the quantitative definition of

entropy – the concept “order” and “disorder” cannot be defined quantitatively,

except for the regular lattice of crystals. Order and disorder in general are categories

rather based on subjective judgment, thus cannot be quantified in a unique way.

Let us first consider those properties of entropy that are in accordance with the

generally acceptable notion of the “measure of disorder”. If the value of one of the

discrete probabilities pi in the distribution function is 1 (consequently, all the others
are zero), then

S ¼ �k ln 1 ¼ 0; (10.123)

That is, the measure of disorder is zero if the (thermodynamic) system can only

exist in one single microstate. Similarly, the mathematical theorem that the entropy

is maximal for a uniform distribution is also in agreement of the intuitive concept of

disorder. In this case, neither of the states is preferred, thus there is equal chance to

find any of them, which is equivalent to a complete disorder. The third property

supporting the analogy is that the disorder monotonously increases if the number of

possibilities (states) is increased provided their distribution is uniform. Entropy

always increases (being an extensive property) when the size of the system is

increased. To keep the analogy, we should accept that the disorder of particles is

greater if they can move in a greater space.

However, the analogy between the (nonquantitative) disorder and the (exact)

entropy cannot be carried any further. To illustrate this, we shall mention a few

contraindications as well. Let us examine Fig. 10.7 and tell which of the two states

of the depicted containers is more ordered. Most of the spectators – if not all of

them – would say that the left-hand side container – the one before mixing – is less
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ordered than the right-hand side one. This opinion is really appropriate, as on a

regular lattice, order can be measured by the regularity of occupation of positions.

However, we know very well that the entropy in the right-hand container – after

mixing – is greater. First, mixing is a spontaneous process, which is accompanied

by an increase of entropy (in an isolated system). Second, we can readily calculate

the increase of entropy by applying (6.42). Thus, we can conclude from this

example that entropy does not measure disorder.
A similar example could be when filling in two liquids of different temperatures

(say, the colder of temperature T1 in place of the colored solutions, and the hotter of
temperature T2 in place of the water). In case of diathermal plates, the same

temperature T3 (T1 < T3 < T2) would settle in each compartment after a while.

Thus, from a more disordered initial state, a less disordered final state would

be formed in a spontaneous process, while the entropy would increase. In this

case, we could calculate the increase in entropy by applying (4.42).

As a third example, we can mention a supercooled liquid. Suppose we carefully

cool a sample of highly purified water to –10�Cwithout freezing, which is the initial

state. After nucleation of the supercooled water with a tiny quantity of ice crystals,

part of the water will freeze immediately – and spontaneously. We can state that

part of the “disordered” liquid has been transformed into “ordered” crystals, thus

the disorder decreased. Again, we know that this process was also spontaneous,

thus the entropy increased in the isolated system – despite an increase in order.

Knowing the molar heat capacities of liquid water and water ice, we can again

calculate the increase of entropy. (The partial condensation of supersaturated vapor

is another example.)

On the basis of the above examples, we can conclude that it is not worth

considering entropy as the measure of disorder, as we can easily be mistaken taking

the analogy seriously. If we want to find an analogy, the “spread” of the given

distribution is a better choice. This spread is properly measured by the expression of

(10.119), which is maximal if the distribution is uniform, and it decreases as we

concentrate the distribution around one or several peaks.

Fig. 10.7 Left panel: a container divided by a grid of plates into 10 � 10 compartments. Half of

the compartments is chosen randomly and filled with aqueous copper sulfate solution, the other

half with pure water. Right panel: the same container with raised grid of plates and completely

mixed content
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Let us finally examine an interesting property of entropy already mentioned at

the end of Sect. 2.2.1. According to Postulate 4, the entropy of any system is zero at

T ¼ 0 K. However, this is not always fulfilled, due to practical reasons. Quantum

mechanics prescribes no degeneration at the temperature T ¼ 0 K; thus, any

macroscopic system should have a single possible state at this temperature. We

know that at 0 K, translational and rotational motions of molecules cease to exist,

their vibrational and electronic modes are in their ground state. Consequently, all

contributions to the molecular partition function have the value q ¼ 1, thus their

product is also 1, and the Nth powers are also 1. As a result, the logarithm of Q is

zero, thus the entropy is also zero.

At temperature T ¼ 0 K, materials are crystalline. They also have only one

single stable state at zero temperature, which also leads to zero entropy. However,

this unique state at zero temperature is not always possible. If the energy of

molecules at the freezing point during cooling is enough that the arrangement of

the crystal can be different from that of the most stable state, this arrangement can

be frozen. It means that the energy of the molecules in the crystal upon further

cooling is not sufficient to change this nonequilibrium state and rearrange to a

perfect crystal. Thus, the “frozen” imperfect crystal can survive for an infinitely

long time and the number of possible microstates will be greater than 1 even if the

temperature is arbitrarily close to zero. Accordingly, the entropy will be also greater

than zero. This is called the residual entropy. However, such systems are not
equilibrium systems, thus they do not question the validity of Postulate 4.

10.4 Calculation of the Chemical Equilibrium Constant

from Canonical Partition Functions

To calculate the equilibrium constant, let us first express the free energy F of pure

gases with the help of the total molecular partition function q:

F ¼ Fð0Þ � kT lnQ ¼ Fð0Þ � kT ln
qN

N!
: (10.124)

The term F(0) is needed to adjust the zero level of free energy, taking into

account the arbitrarily chosen zero levels when calculating contributions to the

molecular partition function q.
Let us apply the Stirling formula to approximate the factorial in the above

expression:

F ¼ Fð0Þ � NkT ln qþ kT N lnN � Nð Þ ¼ Fð0Þ � kT ln qþ kTN lnN � 1ð Þ:
(10.125)
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Let us substitute R ¼ NAkT in place of NkT, thus we obtain – after some

rearrangement – the following expression for the molar free energy:

Fm ¼ Fmð0Þ � RT ln
q

NA

� RT: (10.126)

The equilibrium constant at constant pressure and constant volume can be

obtained from the reaction standard Gibbs potential DrG
Ê; thus, we should calcu-

late this quantity from Fm. Using the definition Gm ¼ Fm þ PVm and restricting

the calculations for ideal gases, we can write PVm in place of RT, thus obtaining the
simple expression:

Gm ¼ Fmð0Þ � RT ln
q

NA

: (10.127)

As we are interested in the standard molar Gibbs potential, we have to calculate

the partition function q at the standard pressure PÊ. Accordingly, it is the partition
function in a canonical ensemble having NA particles at temperature T, in a volume

VÊ ¼ RT=PÊ. Let us denote this molecular partition function by qÊ, and calculate
the standard molar Gibbs potential as:

GÊ ¼ Fmð0Þ � RT ln
qÊ

NA

: (10.128)

We can express Fm(0) based on the definition F ¼ U – TS as:

Fmð0Þ ¼ Umð0Þ � Tð0ÞSð0Þ: (10.129)

By choosing T(0) ¼ 0 K as the reference temperature, the term T(0)S(0)
vanishes, thus we can replace Fm(0) by Um(0).

Now we are in a position to write the standard Gibbs potential of the general

reaction
Pr
i¼1

viAi ¼ 0 in the following form:

DrG
Ê ¼ DrUmð0Þ � RT

Xr
i¼1

ln
qÊi
NA

� �ni

¼ DrUmð0Þ � RT ln
Yr
i¼1

qÊi
NA

� �ni

: (10.130)

Making use of the relation DrG
Ê ¼ �RT lnK, it is easy to express the equilib-

rium constant K. To simplify the notation, let us write DrU0 in place of DrUm(0).

Thus, we obtain:

K ¼
Yr
i¼1

qÊi
NA

� �ni

� e�DrU0
RT : (10.131)
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Obviously, all we need to calculate the equilibrium constant (for ideal gas

reactions) are the standard molecular partition functions of the reactive species

and their zero point energies.

The above expression has a general validity if we replace the ratio qÊi =NA by the

molar partition function QÊ

i calculated correctly for the given species (i.e., not

using the ideal gas approximation).

K ¼
Yr
i¼1

QÊ

i

� �ni � e�DrU0
RT : (10.132)

The meaning of DrU0 is the same; it is the zero-point energy of the reaction. A

convenient way of calculating the molar partition functions QÊ

i for interacting

molecules is to derive them from molecular dynamic simulations.

Equations (10.131) and (10.132) have paramount importance in chemistry. For

not too large molecules, the molecular energy can be obtained by quantum chemical

methods for all molecular modes, from which the partition function can be calcu-

lated. For larger molecules, we can obtain the molecular energies from spectro-

scopic data. An unknown equilibrium constant can also be calculated based on the

knowledge of reactants of similar chemical structure. In this case, the partition

function should be decomposed into the product of nonvariable and variable

factors, and the calculation of the variable factors is enough to calculate the

unknown equilibrium constant. Equation (10.131) has a great importance also in

reaction kinetics; transition-state theory is also based on this relation.

Due to this crucial role in chemistry, we will show the statistical thermodynami-

cal expression of two actual reactions. The first example is a bimolecular reaction
(with a single product)

Aþ B Ð C; (10.133)

whose equilibrium constant can be written as:

K ¼ NAq
Ê

C

qÊA q
Ê

B

e�
DrU0
RT : (10.134)

The second one is a unimolecular reaction (with a single product)

A Ð B; (10.135)

whose equilibrium constant can be written as:

K ¼ qÊB
qÊA

e�
DrU0
RT : (10.136)

As we can see, if the sum of the exponents in the denominator and the numerator

is the same, the Avogadro constant NA does not figure in the formulae.
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Problems

1. Express the molar heat capacity of an Einstein solid as a function of temperature.

Calculate the T ! 0 and T ! 1 limits. Draw a plot of the molar heat capacity as a

function of temperature between 0 K and 10 K (use the reference value of

u0 ¼ 100 J).

Solution: Let us start from the molar entropy (10.13) of the crystal:

s ¼ 3R ln 1þ u

u0

� �
þ 3R

u

u0
ln 1þ u0

u

� �
:

We can calculate the temperature as

T ¼ @s

@u

� ��1

¼ u0

3R ln uþu0
u

:

Solving the above expression for u yields the molar internal energy:

u ¼ u0

e
u0

3RT�1
:

Derivation of this function with respect to temperature directly gives the molar

heat capacity:

cV ¼ @u

@T
¼ u20e

u0

3RT

3RT2 e
u0

3RT � 1
� � :

The limits are in accordance with experimental data; the T ! 0 limit is zero, the

T ! 1 limit is 3R (complying with theDulong–Petit rule). The plot of the function
from 0 to 10 K is the one below. (Note that the exponential rise is not in accordance

with experimental data.)

2

3

0
0

10

CV

R

T /K
4 6 8

2

1
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2. Calculate the equilibrium constant of the reaction

I2ðgÞ Ð 2 IðgÞ

at 800 K and 1atm, supposing each component as an ideal gas, based on the

following data:

~n ¼ 214:6 cm�1; B ¼ 214:6 cm�1; Ed ¼ 1:5422 eV:

Here, ~n is the wave number of the vibration, B is the rotational constant, and Ed is

the dissociation energy (also at 0 K) of the I2 molecule. At the given temperature,

the molecule is in its nondegenerate ground state, while the iodine atom is in a

degenerate electronic state having a multiplicity of 4.

Solution: We can compute the equilibrium constant K by means of the formula

K ¼ qÊI
� �2
NAqÊI2

e�
Ed
RT:

To compute the standard molecular partition function of the iodine atom, we

only have to calculate its translational and electronic contributions, as there are no

rotational or vibrational states. The electronic contribution is the number of degen-

eracy; qÊI;el ¼ 4. The translational contribution can be calculated using (10.67), in

which m is the mass of an iodine atom:

m ¼ MI

NA

¼ 126:90447 gmol�1

6:0220� 1023 mol�1
¼ 2:10734� 10�25 kg,

and the ideal gas molar volume V can be obtained by using the equation of state of

the ideal gas:

V ¼ RT

P
¼ 8:314 Jmol�1K�1 � 800 K

101325 Pa
¼ 0:06564 m3/mol:

Thus,

qÊI;trans ¼
2pmkT
h2

� �3 2=

�V

¼ 2p �2:10734�10�25 kg �1:3807�10�23 JK�1 �800 K
ð6:626�10�34 JsÞ2

 !3 2=

�0:06564m3:

The result is qÊI;trans ¼ 3:992� 1032, which multiplied by the electronic contri-

bution gives qÊI ¼ 1:597� 1033.
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To compute the standard molecular partition function of the I2 molecule, we

have to calculate all four contributions. The electronic contribution is simple, as

there is only a single electronic state available; thus, qÊI2;el ¼ 1. The translational

contribution can be calculated similarly to the case of the iodine atom; the only

difference is the molar mass, which is twice that of the atom. The result of the

calculation is accordingly 23/2 times that of qÊI;trans; that is, q
Ê

I2;trans
¼ 1:129� 1034.

The rotational contribution can be calculated using (10.85), but with a division by 2,

as the I2 molecule is a homonuclear rotor, with a rotational symmetry factor of

s ¼ 2:

qÊI2;rot ¼
kT

2hcB
:

When substituting the actual values, we should be careful with units. The

rotational constant B is measured in cm–1 units, which should be multiplied by hc
to yield energy. Thus, either hcB should be given in SI energy units, or kT should be

given in cm–1 units. Choosing the latter, we can express the Boltzmann constant as

0.69503 cm–1/K.10 (As a matter of fact, a division by hc is also included.) The

resulting rotational partition function is qÊI2;rot ¼ 7454:1.
The vibrational contribution can be calculated using (10.90). Again, we should

be careful using units. The energy of the vibration is given as the wavenumber in

cm–1 units, thus we can use again the Boltzmann constant given above as k ¼
0.69503 cm–1/K and consider the vibrational wavenumber as energy, instead of hn.
The resulting vibrational partition function is qÊI2;vib ¼ 3:126.

Finally, we can multiply the four contributions to get the molecular partition

function qÊI2 ¼ 2:632� 1037.

When calculating the equilibrium constant, we should again take into account the

units of energy. As the zero-point reaction energy is given in eV units, it is useful to

use the according units of the gas constant, which is then given as R ¼ 5.189�
1019 eV K�1 mol�1. The resulting equilibrium constant is 3.104�10�5.

10The reason behind the practice to use cm–1 as an energy unit is historical. The quantum

mechanical expression for the energy of a photon is E ¼ hn, where h is the Planck constant and

n is the frequency of the photon. The frequency can be expressed with the wavelength of the

photon l and the velocity of light in vacuum c as n ¼ c/l, while the wavenumber ~n as ~n ¼ 1=l.
Thus, the energy expressed as a function of the wavenumber is E ¼ hc~n. At the beginning of the

twentieth century when quantum mechanics and spectroscopy were developing, the Planck

constant was not known precisely, but wavenumbers could be measured quite precisely. This

resulted in measuring optical spectroscopic energies as wavenumbers in cm–1 unit, which remains

in use ever since. However, we should keep in mind that the energy dimension is hc~n ¼
1.9865 � 10–23 Jcm � ~n.
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