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Abstract

In recent years, stochastic modelling has emerged as a physically more realistic alternative for modelling in vivo reactions. There are
numerous stochastic approaches available in the literature; most of these assume that observed random fluctuations are a consequence of
the small number of reacting molecules. We review some important developments of the stochastic approach and consider its suitability for
modelling intracellular reactions. We then describe recent efforts to include the fluctuation effects caused by the structural organisation of the
cytoplasm and the limited diffusion of molecules due to macromolecular crowding.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Dramatic advances in genetic and molecular biology
have brought about an unprecedented flood of genomic
data. Analysis of this data—to understand how genes and
proteins work collectively—has led to a significant increase
in the use of computers both for modelling and data inter-
pretation. This is one of the challenges of modern science.
The current interest in computational cell biology reflects
the widespread belief that the complexity and sophistication
of computers and programming could potentially match
the complexity of living cells. The aim of computational
biology is to produce sophisticated computer simulations
against which biological phenomena, data or patterns are
compared. Unfortunately, no consensus presently exists as
to the best methodologies for performing these tasks. This
is particularly true for the computational modelling of com-
plex biochemical reactions and gene networks in cellular
media.
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The modelling of chemical reactions using deterministic
rate laws has proven extremely successful in both chemistry
(Epstein and Pojman, 1998)and biochemistry(Heinrich and
Schuster, 1996)for many years. This deterministic approach
has at its core the law of mass action, an empirical law
giving a simple relation between reaction rates and molec-
ular component concentrations. Given knowledge of initial
molecular concentrations, the law of mass action provides
a complete picture of the component concentrations at all
future time points(Espenson, 1995).

The law of mass action considers chemical reactions to
be macroscopic under convective or diffusive stirring, con-
tinuous and deterministic(Cox, 1994). These are evidently
simplifications, as it is well understood that chemical reac-
tions involve discrete, random collisions between individual
molecules. As we consider smaller and smaller systems,
the validity of a continuous approach becomes ever more
tenuous. As such, the adequacy of the law of mass action
has been questioned for describing intracellular reactions
(Clegg, 1984; Halling, 1989; Kuthan, 2001). Arguments for
the application of stochastic models for chemical reactions
come from at least three directions, since the models (a)
take into consideration the discrete character of the quan-
tity of components and the inherently random character of
the phenomena; (b) are in accordance (more or less) with
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the theories of thermodynamics and stochastic processes;
and (c) are appropriate to describe “small systems” and
instability phenomena.

More than 150 years ago the Scottish botanist Robert
Brown discovered the existence of fluctuations whilst study-
ing microscopic living phenomena (for the early history of
Brownian motion,Kerker, 1974). This in itself has signifi-
cant implications for biochemistry where we often wish to
model reaction rates within individual cells where the vol-
ume of the system is small and the molecular populations
often too low for the system to be consideredmacroscopic.
At the molecular level, random fluctuations are inevitable,
with their effect being most significant when molecules are
at low numbers in the biochemical system. This typically oc-
curs in the regulation of gene expression where transcription
factors interact with DNA binding sites in the gene’s reg-
ulatory sequences. Indeed, these intrinsic fluctuations have
recently been measured using fluorescent probes (see, for
example,Elowitz et al., 2002; Blake et al., 2003). Addition-
ally, it has been proven that low copy numbers of expressed
RNAs can be significant for the regulation of downstream
pathways(McAdams and Arkin, 1997). Thus, there are evi-
dently a number of important biological environments where
only small numbers of molecules are present in the reac-
tion volume, for which, it is argued, stochastic modelling
approaches are required(Morton-Firth and Bray, 1998).

There is also growing evidence of the importance for re-
action kinetics of the structural organisation of the intracel-
lular environment, which is far from the homogeneous, well
mixed solution typical of in vitro experiments (seeSchnell
and Turner, 2004, and references therein). Cellular environ-
ments are highly compartmented and structured throughout
the reaction volume. A high degree of molecular crowding
as well as the presence of endogenous obstacles in cellular
media have important consequences in the thermodynam-
ics of the cell(Minton, 1993, 1998)and strongly affect dif-
fusion processes(Luby-Phelps et al., 1987). The viscosity
of the mitochondrion is 25–37 times higher than that of a
typical in vitro experimental buffer(Scalettar et al., 1991).
Diffusion of macromolecules in the cytoplasm can be 5–20
times lower than in saline solutions(Verkman, 2002). Fur-
thermore, many reactions occur on two-dimensional mem-
branes or one-dimensional channels(Clegg, 1984; Srere
et al., 1989). These structural considerations mean we must
be careful when considering howwell mixed a chemical
system is.

The stochastic approach uses the inherent random nature
of microscopic molecular collisions to build a probabilistic
model of the reaction kinetics(Qian and Elson, 2002). This
approach is thus inherently suited to the small, heterogenous
environments typical of in vivo conditions(Kuthan, 2001).
However, one major problem with stochastic methods is that
they are difficult to implement analytically and researchers
are reduced to numerical studies.

In this work, we review some important developments
of the stochastic approach and consider its suitability for

modelling in vivo reactions. Firstly, we examine how
Gillespie (1977) has used the stochastic formalism to
develop an algorithm for simulating reaction dynamics,
and illustrate by means of numerical simulations how
the stochastic and deterministic approaches compare. We
discuss some further streamlining of the algorithm by
Gibson and Bruck (2000), Gillespie (2001), Burrage and
Tian (2003), Rathinam et al. (2003)andTian and Burrage
(2004a) leading to greater computational efficiency. We
then consider howRao and Arkin (2003)have incorporated
the quasi-steady state assumption—an approximation de-
rived from the deterministic approach—into the stochastic
method, and the computational savings achieved. We high-
light the failure of the considered stochastic approaches to
incorporate non-homogeneities typical of in vivo conditions
into the models and present an alternative Monte-Carlo
approach byBerry (2002)and Schnell and Turner (2004).
Finally we discuss the implications of Schnell and Turner’s
results—in particular with relation to Kopelman’s formu-
lation of fractal-like kinetics—to our understanding of in
vivo biochemical kinetics.

2. The deterministic and stochastic approaches

There is now considerable evidence from both theoret-
ical and experimental perspectives of the role of noise in
biochemical pathways.Fedoroff and Fontana (2002)remark
that “stochasticity is evident in all biological processes. The
proliferation of both noise and noise reduction is a hallmark
of organismal evolution”. However, a natural question to ask
is: What is the nature of this stochasticity?Hume (2000)
notes that “transcription in higher eukaryotes occurs with a
relatively low frequency in biological time and is regulated
in a probabilistic manner”.Sano et al. (2001)also remark
that “initiation of gene transcription is a discrete process in
which individual protein-coding genes in an off state can
be stochastically switched on, resulting in sporadic pulses
of mRNA production”. This is the dichotomy that we must
resolve—proteins are discrete objects, yet their effects are
often modelled (as ordinary differential equations) in terms
of concentrations.

Recently,Crampin and Schnell (2004)pointed out that
“biological systems are characterised by their regulatory and
adaptive properties, from homeostatic mechanisms which
maintain constant output levels to switching between al-
ternative substrates or developmental pathways. Regulatory
mechanisms including thresholds, allosteric interactions and
feedback in gene transcription networks, metabolic path-
ways, signal transduction and intercellular interactions are
defining biological characteristics—almost everything that
happens in life boils down to enzyme-catalysed reactions”.
This leads us to the modelling process of how to represent
in vivo enzymic reactions mathematically. There are many
approaches; these include:
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• Directed graphs in which molecules are vertices and the
reactions are the edges;

• Bayesian networks in which the vertices correspond to
random variables that describe, for example, a gene ex-
pression while the network defines a joint probability den-
sity function;

• Boolean networks in which a biological object is either in
an on or off state;

• Ordinary differential equations (ODEs) in which chemi-
cal kinetics rate equations are used to represent protein
concentrations;

• Partial differential equations (PDEs) in which the spatial
structure of cells are taken into account; and finally

• Stochastic differential equations (SDEs) in which we have
to resolve the issue of whether we work with concentra-
tions or with individual molecules through continuous or
discrete models.

As the previous discussions would suggest, we can con-
sider three different types of modelling regimes for under-
standing biochemical pathways and networks. These are the
discrete and stochastic, the continuous and stochastic and
the continuous and deterministic regimes and reflect the na-
ture of the considered reactions and number of molecules
present in the system.

2.1. Deterministic: the law of mass action

The fundamental empirical law governing reaction rates
in biochemistry is thelaw of mass action. This states that
for a reaction in a homogeneous, free medium, the reac-
tion rate will be proportional to the concentrations of the
individual reactants involved. For example, given the simple
Michaelis–Menten reaction

S + E
k1�
k−1

C
k2−→E + P (1)

the rate of production of complexC would be

dC+
dt

= k1SE

and the rate of destruction of C would be

dC−
dt

= k−1C + k2C.

Combining these terms gives an expression for the rate of
change of concentration of C

dC

dt
= dC+

dt
− dC−

dt
= k1SE− (k−1 + k2)C. (2)

Using this law, similar expressions for the rate of change
of concentration of each of the molecules can be found.
Hence, we can express any chemical system as a collection
of coupled non-linear first order differential equations. Apart
from the most simple cases these do not in general have an
analytical solution(Schnell and Mendoza, 1997). However,
it is straightforward enough to numerically integrate them

to find an approximation of the reaction dynamics of the
system.

2.2. Stochastic: the chemical master equation

Whereas the deterministic approach outlined above is
essentially an empirical law, derived from in vitro experi-
ments, the stochastic approach is more physically rigorous.
The stochastic treatment of chemical reactions was initi-
ated byKramers (1940). Fundamental to the principal of
stochastic modelling is the idea that molecular reactions
are essentially random processes; it is impossible to say
with complete certainty the time at which the next reaction
within a volume will occur. In macroscopic systems, with
a large number of interacting molecules, the randomness
of this behaviour averages out so that the overall macro-
scopic state of the system becomes highly predictable. It is
this property of large scale random systems that enables a
deterministic approach to be adopted; however, the validity
of this assumption becomes strained in in vivo conditions
as we examine small-scale cellular reaction environments
with limited reactant populations.

Bartholomay (1957)was one of the first biochemists to
examine enzyme-catalysed reactions within the framework
of statistical kinetics. Over the subsequent 20 years the
framework led to the stochastic analysis of a variety of sim-
ple reaction mechanisms including the Michaelis–Menten
mechanism(Bartholomay, 1962a,b; Jachimowski et al.,
1964; Darvey and Staff, 1967; Staff, 1970; Arányi and
Tóhn, 1977). As explicitly derived byGillespie (1992b), the
stochastic model uses basic Newtonian physics and ther-
modynamics to arrive at a form often termed thepropensity
function that gives the probabilityaµ of reactionµ occur-
ring in time interval(t, t + dt)

aµ dt = hµcµ dt, (3)

where theM reactions are given an arbitrary indexµ
(1 ≤ µ ≤ M) andhµ denotes the number of possible com-
binations of reactant molecules involved in reactionµ. For
example, if reactionl involves two species S1 and S2 with
Xi molecules of species Si, we havehl = X1X2.

The rate constantcµ is dependent on the radii of the
molecules involved in the reaction, and their average rela-
tive velocities—a property that is itself a direct function of
the temperature of the system and the individual molecular
masses(Gillespie, 1977). These quantities are basic chemi-
cal properties which for most systems are either well known
or easily measurable. Thus, for a given chemical system,
the propensity functions,aµ can be easily determined. In-
deed, their form as described above, constitute thefunda-
mental hypothesis of the stochastic formulation of chem-
ical kinetics—valid for any chemical system that is kept
“well mixed” either by direct stirring or by requiring that
non-reactive molecular collisions occur far more frequently
than reactive molecular collisions(Gillespie, 1976).
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The stochastic formulation proceeds by considering the
grand probability function P(X; t) ≡ probability that there
will be present inV at timet, Xi of species Si, whereX ≡
(X1, X2, . . . , XN) is a vector of molecular species popu-
lations. Evidently, knowledge of this function provides a
complete understanding of the probability distribution of all
possible states at all times.

By considering a discrete infinitesimal time interval(t, t+
dt) in which either 0 or 1 reactions occur1 we see that there
exist onlyM + 1 distinct configurations at timet that can
lead to the stateX at timet + dt and as such, we can write
our grand probability function at timet + dt as a function
of all possible precursor states at timet

P(X; t + dt) = P(X; t)P(no state change over dt)

+
M∑

µ=1

P(X − vµ; t)P(state change toX over dt),

wherevµ is a stoichiometric vector defining the result of
reactionµ on state vectorX, i.e. X → X + vµ after an
occurrence of reactionµ. It is straightforward to show that

• P(no state change over dt) = 1 −∑M
µ=1 aµ(X)dt.

• P(state change toX over dt) = ∑M
µ=1 P(X−vµ; t)aµ(X−

vµ)dt.

If we then note that

lim
dt→0

P(X; t + dt) − P(X; t)
dt

= ∂P(X; t)
∂t

we arrive at thechemical master equation (CME) that de-
scribes the stochastic dynamics of the system

∂P(X; t)
∂t

=
M∑

µ=1

aµ(X − vµ)P(X − vµ; t) − aµ(X)P(X; t).

(4)

3. Stochastic simulation algorithms

Essentially, the characterisations of the three modelling
regimes—the discrete and stochastic, the continuous and
stochastic and the continuous and deterministic—depend
on the nature of the reactions and the number of molecules
in the system being studied. One key simulation technique
is the stochastic simulation approach to chemical reactions
developed byGillespie (1977)through the stochastic sim-
ulation algorithm (SSA). This is an exact procedure for
numerically simulating the time evolution of a well-stirred
reacting system that takes proper account of the random-
ness inherent in such a system. It is rigorously based on the
same microphysical premise that underlies the CME de-
scribed above(Gillespie, 1992a)and gives a more realistic

1 The probability of more than one reaction occurring in time interval
(t, t + dt) is O(dt) and hence vanishes in the limit dt → 0

representation of a system’s evolution than the deterministic
reaction rate equation (RRE) represented mathematically
by ODE. In particular, the RRE is entirely inappropriate if
the molecular population of some critical reactant species is
so small that microscopic fluctuations can produce macro-
scopic effects. This is especially true for the enzymatic re-
actions in living cells(Kuthan, 2001). As with the CME, the
SSA converges, in the limit of large numbers of reactants,
to the same solution as the law of mass action.

The algorithm takes time steps of variable length, based
on the rate constants and population size of each chemical
species. The probability of one reaction occurring relative to
another is dictated by their relative propensity functions. Ac-
cording to the correct probability distribution derived from
the statistical thermodynamics theory, a random variable is
then used to choose which reaction will occur, and another
random variable determines how long the step will last. The
chemical populations are altered according to the stoichiom-
etry of the reaction and the process is repeated. In recent
years, the SSA has been successfully applied in a number
of settings includingλ-phage(Arkin et al., 1998), and cir-
cadian rhythms(Elowitz and Leibler, 2000; Gonze et al.,
2002). The cost of this detailed stochastic simulation algo-
rithm is the likely large amounts of computing time. The key
issue is that the time step for the next reaction can be very
small indeed if we are to guarantee that only one reaction
can take place in a given time interval.

An alternative approach to the SSA is via theStochSim
package developed initially by CarlMorton-Firth (1998)
[now Carl Firth] as part of a study of bacterial chemotaxis.
The aim was to develop a realistic way of representing the
stochastic features of this signalling pathway and to han-
dle the large numbers of individual reactions encountered
(Firth and Bray, 2000). Molecules or molecular complexes
are represented as individual software objects. Reactions be-
tween molecules occur stochastically, according to proba-
bilities derived from known rate constants.

StochSim works by quantising time into a series of dis-
crete, independent time intervals, the sizes of which are
determined by the most rapid reaction in the system. In
each time interval, a molecule and another object (either a
molecule or a pseudo-molecule) is selected at random. If two
molecules are selected, any reaction that occurs is bimolec-
ular, whereas if one molecule and a pseudo-molecule are
selected, it is unimolecular. Another random number is then
generated to determine if a reaction will occur. The proba-
bility of a reaction is retrieved from a look-up table and if
this exceeds the random number, the particles do not react.
On the other hand, if the probability is less than the random
number, the particles react, and the system is updated.

StochSim is likely to be slower than the Gillespie algo-
rithm especially when the number of molecules is large.
However, if the system contains molecules that can exist
in multiple states, thenStochSim may not only be faster
but also closer to physical reality.StochSim has been ex-
tended to incorporate explicit spatial representation in which
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nearest-neighbour interactions of molecules (such as clus-
tered receptors on a membrane) can be simulated(Shimizu
et al., 2000).

3.1. Gillespie’s exact algorithm

To understand the SSA in more detail, we first introduce
the reaction probability density function P(τ, µ|X) defined
such thatP(τ, µ|X)dτ ≡ probability that given the stateX
at time t, the next reaction in the volume will occur in the
infinitesimal time interval(t + τ, t + τ + dτ) and will be an
Rµ reaction.

The algorithm works by commencing att0 with some ini-
tial state and randomly picking the time and type of the next
reaction to occur from the distributionP(τ, µ|X(t0)). It then
updates the overall state of the system to take account of
an occurrence ofRµ and repeats the whole procedure, this
time picking from the distribution derived from the newly
updated state, i.e.P(τ, µ|X(t1)). This process loops repeat-
edly and in doing so effectively steps through time forming
a complete evolution of the system based on the probabilis-
tic model.

To find an expression forP(τ, µ|X) we note that it is equal
to the probability ofno reaction over time interval(t, t + τ),
P0(τ|X) multiplied by the probability thatRµ will occur
over time interval(t + τ, t + τ + dτ), namelyaµ dτ. Thus,

P(τ, µ|X) = P0(τ|X)aµ dτ = P0(τ|X)hµcµ dτ.

It turns out thatP0(τ|X) has the form(Gillespie, 1977)

P0(τ|X) = exp

(
−

M∑
ν=1

aντ

)
(5)

from which we may conclude that

P(τ, µ|X)=
{
aµexp(−a0τ) if 0 ≤τ<∞ andµ=1, . . .,M
0 otherwise,

where aµ = hµcµ and a0 = ∑M
ν=1 aν. By noting that

P(τ, µ|X) is separable, i.e. the product of two functionsf(µ)

andg(τ) which each only depend on one of our two param-
eters, we see that at any point we can pickτ andµ from the
distributionP(τ, µ|X) by choosing two random numbersr1
andr2 from the interval [0,1] and settingµ andτ such that

τ = 1

a0
ln

1

r1
(6)

µ−1∑
ν=1

< r2a0 ≤
µ∑

ν=1

. (7)

So in summary, after setting the initial species populationsX

and reaction constantscµ the algorithm loops the following
steps:

(1) Calculateaµ = hµcµ (1 ≤ µ ≤ M).
(2) Generater1 andr2 and calculateτ andµ according to

(6) and(7).

(3) Increaset by τ and adjustX to take account of an oc-
currence ofRµ.

3.2. Computational implementation

By following the simple procedure outlined above, a com-
putational algorithm was set up to explore the behaviour
predicted by the stochastic approach and compare it to the
predictions of the deterministic rate laws. The algorithm im-
plemented the Michaelis–Menten mechanism(1) whereby
enzyme and substrate molecules combine to form a com-
plex which can then either disassociate back into the orig-
inal enzyme–substrate pair or instead convert the substrate
molecule into a product molecule leaving the enzyme free
to form a new pairing.

In the deterministic approach, the three reactions are con-
trolled by the reactant concentrationsXi and the rate con-
stantsk1, k−1 andk2. By contrast, in the stochastic approach
at any given time the reactionprobabilities are governed by
the reactant concentrationsXi and rate constantsc1, c−1 and
c2 as described inSection 2.2. It turns out thatcµ andkµ
are essentially equivalent differing only by factors ofV , the
volume of the vessel(Gillespie, 1977).2

3.2.1. Results and analysis
Thus, it is relatively straightforward to contrast the results

of the two methods.Fig. 1(a)shows the results of 2000 runs
of the stochastic algorithm simulating a system with initial
molecular populationsS0 = 100,E0 = 10, C0 = P0 = 0
and a volume of 1000 units.3 The blue/broken solid curves
of each run (3 runs are shown) of the stochastic method
show significant random fluctuations from the mean (shown
in red/plus sign symbols).

The result of numerically integrating the equations of
the deterministic approach is shown in green/smooth solid
curve. It is clear that there is a close correspondence be-
tween the predictions of the deterministic approach and the
stochastic approach, with the deterministic curve falling well
within 1 standard deviation (S.D.) of the stochastic mean
(the red/dash curve). This is a very close match, especially
considering our stochastic simulation is modelling a system
containing just 110 molecules—well within what we might
consider to be themicroscopic domain.

However, it is worth bearing in mind that an actual in vivo
biochemical reaction would follow just one of the many ran-
dom curves (shown in blue/broken solid curves) that average
together producing the closely fitting mean. This curve may
deviate significantly from that of the deterministic approach,
and thus call into question its validity. Hence, it is perhaps
most important to consider thevariance of the stochastic

2 This is simply a consequence of the way the different constants are
defined, withcµ based on absolute molecularpopulations and kµ based
on molecularconcentrations.

3 The unit of volume is arbitrary as long as we are consistent in our
units when considering molecular concentrations.
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Fig. 1. Stochastic algorithm simulation for the substrate density S in the Michaelis–Menten reaction(1). The blue/broken solid curves are individual
simulations. The green/smooth solid curves are the results of numerically integrating the deterministic differential equation. The red/plus signsymbols
are the mean for the 2000 runs of the stochastic simulation and the red/dash line corresponds to the mean plus (or minus) one standard deviation. Initial
conditions are:C = P = 0. (a) Results for initial molecular populationsS0 = 100 andE0 = 10. Three individual simulations are shown explicitly. (b)
Results for initial molecular populationsS0 = 10 andE0 = 1. One individual simulation is shown explicitly.

approach—with a larger variance indicating a greater devia-
tion from the mean and hence from the deterministic curve.

Fig. 1(b) shows the results for exactly the same simula-
tion setup, except this time we are modelling a system con-
sisting of just 11 molecules within a volume of 100 units
[thus the molecular concentrations are equal to those in
Fig. 1(a)]. We see that the deterministic curve (green/smooth
solid curve) now shows significant deviation from the mean
curve (red/plus sign symbols) but still lies within the 1 S.D.
envelope. However, this envelope is now very much wider,
indicating that the results of individual runs (blue/broken
solid curve) will differ more significantly from the deter-
ministic solution.

Finally, to confirm compatibility of the two approaches
Fig. 2 illustrates how, on average, the stochastic approach
tends to the same solution as the deterministic approach
as the number of molecules in the system increases, and
we hence move from themicroscopic to the macroscopic
domain. Coupled with this, we also find (Fig. 3) that the
log S.D. of the data from the 2000 simulations drops highly
linearly as the simulation volume is increased (keeping
molecularconcentrations constant), meaning that each spe-
cific run is individually in closer and closer agreement with
the deterministic approach as the number of molecules in
the system increases. This is a direct effect of the inherent
averaging of macroscopic properties of a system of many
particles.

These results provide clear verification of the compatibil-
ity of the deterministic and stochastic approaches, but im-
portantly also illustrate the validity of the deterministic ap-
proach in systems containing as few as 100 molecules. As
is clear fromFig. 1(a) the match between individual runs
of the stochastic simulation and the deterministic solution is
still good even for such a small system.

3.3. Enhanced stochastic simulation techniques

Gillespie’s algorithm suffers from a rapidly increasing
computational overhead as the complexity of the system
being modelled is increased. It is very common in biochem-
istry to have systems with several or even tens of chemical
reactants interacting via an array of distinct reaction mech-
anisms. The key point about the SSA is that the time step
τ must be small enough to guarantee that only one reaction
occurs in that time interval, and as such, increasing the
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5.0e3
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C

Fig. 2. Mean results from 2000 runs of the stochastic algorithm simu-
lating systems with varying molecular populations for the enzyme sub-
strate complex C population in the Michaelis–Menten reaction(1). The
green/smooth solid line is the numerical solution for the deterministic
differential equations. The total number of molecules in the simulation
increases from 10 molecules (cyan/broken solid curve), 110 molecules
(blue/dash curve) to 1100 molecules (red/plus sign symbols). The initial
molecularconcentrations for the simulations are:S0 = 0.10, E0 = 0.01,
C0 = P0 = 0 molecules per unit volume.
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Fig. 3. “Global S.D.’s” (i.e. the mean over the whole simulation time of
the S.D. at each time-point) of molecular concentration data from 2000
runs of the stochastic algorithm for four different simulation volumes
with equal initial molecular concentrations. Data for S (circle symbol)
and P (cross symbol) are indistinguishable (blue/dash curve), as are data
(red/solid curves) for C (circle symbol) and E (cross symbol).

molecular population or number of reactions necessarily re-
quires a corresponding decrease inτ. Clearly, the SSA can
be very computationally inefficient especially when there
are large numbers of molecules or the propensity functions
are large.

Now if the system possesses a macroscopically infinites-
imal timescale so that during any dt all of the reaction
channels can fire many times, yet none of the propensity
functions change appreciably, then the discrete Markov
process as described by the SSA can be approximated by
a continuous Markov process. This Markov process is de-
scribed by the chemical Langevin equation (CLE), which
is a stochastic ordinary differential equation (SDE)—see
Gillespie (1992b). Thus, the vector of chemical species as
a function of time can be viewed as the solution of an SDE
in Itô form

dX =
M∑

j=1

νjaj(X)dt +
M∑

j=1

νj

√
aj(X)dWj(t), (8)

where theWj(t) are independent Wiener processes.
The CLE represents processes in the intermediate regime,

that is those processes that are stochastic and continuous. A
Wiener process is a stochastic process satisfying

E(W(t)) = 0, E(W(t)W(s)) = min{t, s}.

It is known that the Wiener increments are independent-
Gaussian processes with mean 0 and variance|t − s| (that
is, N(0, |t − s|)). Thus the Wiener increment!W(t) ≡
W(t+!t)−W(t) is a Gaussian random variableN(0,!t) =√

!tN(0,1).

The CLE is an example of the more general class of Itô
SDEs given by

dy(t) = g0(y(t))dt +
d∑

j=1

gj(y(t))dWj(t),

y(t0) = y0, y ∈ R
m. (9)

Thus, general classes of methods that can be used to solve
(9) can also be used to simulate solutions of(8) (see, for
example,Kloeden and Platen, 1992).

We note that the third regime occurs when the noise terms
are negligible compared with the deterministic term. This
leads to the standard chemical kinetic approach that is de-
scribed by the reaction rate equations

X′(t) =
M∑

j=1

νjaj(X(t)).

There are standard ODE techniques for solving such a sys-
tem. The efficacy of such methods depends on whether the
system is stiff or not—that is whether or not there are widely
differing time constants. For stiff systems, explicit methods
cannot be used and A-stable implicit methods are required.

Recently, considerable attention has been paid to reducing
the computational time of simulation algorithms for stochas-
tic chemical kinetics.Gibson and Bruck (2000)refined the
first reaction SSA of Gillespie by reducing the number of
random variables that need to be simulated. This can be
effective for systems in which some reactions occur much
more frequently than others.Resat et al. (2001)treat sys-
tems which have widely varying rate constants by applying
a weighted Monte Carlo approach.

Gillespie (2001)proposed two new methods, namely the
τ-leap method and the midpointτ-leap method in order to
improve the efficiency of the SSA while maintaining accept-
able losses in accuracy. The key idea here is to take a larger
time step and allow for more reactions to take place in that
step, but under the proviso that the propensity functions do
not change too much in that interval. Thus in the time inter-
val [t, t + τ) and with the present stateX(t) at time t, then
the number of times that the reaction channelRj will fire is
a Poisson random variable

Kj(τ;X, t) = P(aj(X), τ), j = 1, . . . ,M.

Here, the notationP(λ, t) denotes a stochastic Poisson pro-
cess with meanλt and varianceλt and where

Pr(P(λ, t) = k) = e−λt(λt)k

k!
.

These considerations lead to theτ-leap method.

3.3.1. The τ-leap method
Choose a value forτ that satisfies the leap condition: i.e., a

temporal leap byτ will result in a state changeλ such that for
every reaction channelRj, |aj(X+λ)−aj(X)| is “effectively
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infinitesimal”. Generate for eachj = 1, . . . ,M a sample
value kj of the Poisson random variableP(aj(X), τ), and
computeλ = ∑M

j=1 kjνj. Finally, perform the updates by
replacingt by t + τ andX by X + λ.

Burrage and Tian (2003)introduced the framework of
Poisson–Runge–Kutta (PRK) methods for simulating chem-
ical reaction systems. These PRK methods are related to the
class of stochastic Runge–Kutta (SRK) methods for solving
stochastic differential equations driven by Wiener noise.

The reason for adopting this framework is as follows.
A Poisson random variableP(aj(X), τ) with a large mean
aj(X)τ can be approximated by a Gaussian random variable
N(aj(X)τ, aj(X)τ), since

P(aj(X), τ) ≈ N(aj(X)τ, aj(X)τ)

= aj(X)τ +
√

aj(X)τN(0,1),

whereN(µ, σ2) is a Gaussian random variable with mean
µ and varianceσ2. This can be viewed as

P(aj(X), τ) ≈ aj(X)τ +
√

aj(X)!W(t). (10)

Now the simplest numerical method for solving(9) is the
Euler–Maruyama method. It takes the form

yn+1 = yn + hg0(yn) +
d∑

j=1

!W
(n)
j gj(yn), tn+1 = tn + h,

where!W
(n)
j ≡ Wj(tn +h)−Wj(tn) is a Gaussian random

variableN(0, h).
The Euler–Maruyama method converges with strong or-

der 0.5 and weak order 1 to the Itô form of the SDE. If it is
applied to(8) it takes the form

Xn+1 = Xn + τ

M∑
j=1

νjaj(Xn) +
M∑

j=1

!W
(n)
j νj

√
aj(Xn).

Now using the approximation in(10) we can write this as

Xn+1 = Xn +
M∑

j=1

νjPj(aj(Xn), τ). (11)

This method is nothing but theτ-leap method of Gillespie.
Thus, theτ-leap method is the Euler method applied in the
discrete setting when there are small numbers of molecules.
This means that we can essentially apply the same algorithm
in different regimes, which is important in attempting to use
multi-scaled, partitioning techniques—see below.

More recently,Tian and Burrage (2004a)have considered
sampling from a Binomial distribution rather than a Poisson
distribution in(11). This avoids generating negative molec-
ular numbers that can occur with the Poisson leap methods
and appears to lead to more robust methods with significant
improvements in accuracy and efficiency.

Rathinam et al. (2003)consider how stiffness manifests
itself at both the continuous deterministic and discrete

stochastic levels. In this case explicit methods become im-
practical. The authors construct two implicit versions of
the explicit τ-leap method known as the rounded and un-
rounded implicitτ-leap method, which have better stability
properties than the explicitτ-leap method and are suitable
for solving stiff chemical systems. The rounded method has
the form

X = Xn + τ

M∑
j=1

νj(aj(X) − aj(Xn))

+
M∑

j=1

νjPj(aj(Xn), τ)

Xn+1 = Xn +
M∑

j=1

νj[τ(aj(X) − aj(Xn))]

+
M∑

j=1

νjPj(aj(Xn), τ),

where [·] denotes the nearest nonnegative integer.

4. Incorporating the quasi-steady-state assumption in
the stochastic formulation

One of the great challenges to the efficient simulation of
chemical kinetic systems is how we deal with mixed systems
in which some key species have low abundances (as is the
case for some molecules in genetic regulation) while other
molecules have large abundances and can be modelled via
continuous SDEs. Thus, a vital question to address is how
we can link discrete and continuous models and simulation
algorithms in a sensible and efficient manner when treating
chemical kinetic systems?

Recently two new approaches byHaseltine and Rawlings
(2002) and Rao and Arkin (2003)have been proposed in
an attempt to speed up the performance of the SSA. Both
of these ideas are based on partitioning of the system. In
the case of Rao and Arkin, they consider a timescale sepa-
ration in which a subset of the system is asymptotically at
steady state. This is called the quasi-steady-state assumption
(QSSA) and eliminates the fast dynamics that is responsi-
ble for the poor computational performance of the SSA. The
QSSA is a simplification derived from the deterministic ap-
proach to reduce the number of coupled differential equa-
tions governing the dynamics of the system under study (see
Schnell and Maini, 2003, for a review). It assumes that one
or more intermediate molecules within a chemical system
quickly reach a quasi-equilibrium state whereby their rate
of formation and destruction approximately sum to zero.
Hence, applying the QSSA to deterministic kinetics, results
in the ODEs describing the intermediate species being set to
0 (Schnell and Mendoza, 1997; Schnell and Maini, 2000).
Similarly, in the stochastic setting the system is split into
primary (y) and ephemeral (z) subsystems.
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Inherent in the QSSA is the assumed macroscopic nature
of the system allowing the averaging out of microscopic
fluctuations in molecular populations.

Accordingly, Haseltine and Rawlings (2002)attempt to
speed up the performance of the SSA by partitioning a chem-
ical reaction system into slow and fast reaction subsets. The
slow subsystem corresponds to extents with small propen-
sity functions and few numbers of reactions, while the latter
corresponds to large propensity functions and large num-
bers of reactions. This partitioning is achieved by exploiting
the structure of the CME and deriving master equations that
describe the evolution of the probability density function
for both the slow and fast subsystems. The slow system is
treated by the SSA, while the fast system is treated either de-
terministically or by applying the explicit Euler–Maruyama
method to the CLE. Thus, at each time pointtn the CLE is
repeatedly solved untiltn+1 = tn + τ is reached, then the
SSA is applied to the slow subsystem with a stepsize ofτ.

Burrage et al. (2004)extended these ideas to classify a
system (in terms of both the size of the propensity functions
and the number of molecules in the system) into slow, in-
termediate and fast reactions. They form three vectors cor-
responding to the slow, intermediate and fast regimes and
place in those vectors the corresponding reaction numbers.
If there are no reactions in, say, the intermediate vector for
a given time step, this means there are no intermediate re-
actions for that step and the simulation regime changes ac-
cordingly. They use the SSA, theτ-leap method, and the
Euler–Maruyama method in the slow, intermediate and fast
regimes, respectively.

Returning to the Rao and Arkin approach, we explicitly
consider the important case of the Michaelis–Menten mech-
anism(1). Subject to the condition derived analytically by
Schnell and Mendoza (1997)

1 � E0

KM + S0
≈ E0

S0
if k1 � k−1, k2 (12)

whereKM = (k−1 + k2)/k1, the QSSA assumes after some
initial transient period that the complex concentrationC

stays constant, i.e. dC/dt ≈ 0. This reduces the number of
coupled differential equations by one as well as simplifying
those that remain.Rao and Arkin (2003)propose that appli-
cation of the QSSA to the stochastic formulation has a sim-
ilar simplifying effect by excluding the quasi-steady-state
“ intermediate” chemical species from the state vectorX thus
reducing its dimensionality. This in turn reduces the dimen-
sionality and complexity of the CME of the system(4).

By splitting state vectorX into the primary species vector
Y and the intermediate species vectorZ such thatX ≡
(Y ,Z), the CME can be rewritten

∂P(Y ,Z; t)
∂t

=
M∑

µ=1

aµ(Y− vY
µ,Z − vZ

µ)P(Y− vY
µ,Z − vZ

µ; t)

− aµ(Y ,Z)P(Y ,Z; t). (13)

We then make use of the definition of conditional probabil-
ities

P(Y ,Z; t) = P(Z|Y; t)P(Y; t)
and the chain rule of differentiation to rewrite(13) as

P(Y; t) ∂P(Z|Y; t)
∂t

+ P(Z|Y; t) ∂P(Y; t)
∂t

=
M∑

µ=1

[aµ(Y − vY
µ,Z − vZ

µ) × P(Z − vZ
µ|Y − vY

µ; t)

× P(Y − vY
µ; t) − aµ(Y ,Z)P(Y ,Z; t)].

We then apply the QSSA by setting the net rate of change
of the conditional probability of the intermediate species to
zero

∂P(Z|Y; t)
∂t

≈ 0 (14)

eliminating the first term from the LHS of the above equa-
tion. By noting

∑
z P(Z|Y; t) = 1 we arrive at theapproxi-

mate master equation, which is dependent only onY

∂P(Y; t)
∂t

=
M∑

µ=1

[bµ(Y − vY
µ)P(Y − vY

µ; t) − bµ(Y)P(Y; t)]

(15)

where

bµ(Y) =
∑
z

aµ(Y ,Z)P(Z|Y).

Thus, we have an approximate stochastic form for the dy-
namics of the primary species dependent only on the state
of the primary species. From this point we are able to use
a modified version of Gillespie’s algorithm to go from the
CME to the generation of a stochastic simulation of the sys-
tem. The modification involves at each time step picking
Z from the conditional probability functionP(Z|Y), before
using it to calculateaµ(Y ,Z) ≡ aµ(X) for theM reactions
in the usual way.

Taking as an illustrative example the Michaelis–Menten
mechanism(1), Rao and Arkin (2003)show that by appli-
cation of the QSSA choosing

• Primary species:ST = S + C ≡ total concentration of
substrate, free and bound;

• Intermediate species:C ≡ enzyme–substrate complex
concentration.

we can consider the simplified system

S → P (16)

with associated CME

dP(ST; t)
dt

= a(ST + 1)P(ST + 1; t) − a(ST)P(ST; t). (17)
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In this equation,

a(ST) = vmaxST

KM + ST
,

wherevmax = k2E0 is the maximum velocity of the reaction.
Thus, we have a much simplified CME involving just one
(as opposed to the original three) reaction, and in principle
stochastic simulation of this system becomes less computa-
tionally demanding. This technique of combining more than
one species (S andC) into a single aggregate variable (ST)
is known aslumping, and as shown by(Schnell and Maini,
2002) is the basis of the total Quasi-Steady-State Assump-
tion (tQSSA)—an alternative approximation technique valid
in many cases where the standard QSSA is not.

However, the clear computational benefit of this simpli-
fication is offset to a degree by the need to calculate or
approximate the conditional probability functionP(Z|Y) ≡
P(C|ST). In this case, rather than generating and randomly
selecting from the probability functionP(C|ST) at each time
step, an analytical expression for the expectationE(C|ST)

is instead used.
Rao and Arkin further apply the QSSA to more complex

biochemical systems involved in gene regulation, illustrating
the computational savings inherent in their approach. In do-
ing so they reduce the number of reactions considered in the
system from 10 down to 2. In this case, rather than explicitly
calculating conditional probability functionP(Z|Y) it is in-
stead approximated with a Gaussian distribution. The mod-
ified Gillespie algorithm is then implemented and shown to
cause a 50% reduction in computational time with minimal
loss of accuracy.

Whilst this evidence is convincing as to the accuracy and
computational benefit of Rao and Arkin’s technique, it is im-
portant to consider how valid it is to apply the QSSA within
the stochastic method—a method whose benefit over the de-
terministic approach has been shown to exist only within
the microscopic domain. The QSSA is fundamentally de-
rived from the deterministic approach where large numbers
of molecules are assumed. As such, it is far from obvious
that we can safely transfer this approximation to the micro-
scopic domain. Thus, it seems pertinent to ask whether it is
valid at all to incorporate the QSSA within the stochastic
framework.

5. Two-dimensional Monte Carlo simulations

Common to all the stochastic methods considered so far
is the assumption that the chemical system iswell mixed at
all times. This allows us to make the simplifying assumption
that throughout the reaction any given particle has equal
chance of colliding with any other particle wherever in the
volume they are each located.

This well mixed assumption requires that the diffusion of
molecules through the volume be sufficiently unrestricted
that the average time taken for a molecule to go from one

reactive collision to another is significantly greater than the
average time taken to diffuse across the volume.

The structural organisation of the cytoplasm has only re-
cently come to the fore in modelling in vivo kinetics(Ellis,
2001). Intracellular environments are characterised by sig-
nificant physical structures that are likely to seriously inhibit
the diffusion of molecules across the reaction volume. As
such the validity of the stochastic approaches discussed so
far is called into question when considering in vivo reactions
(seeSchnell and Turner, 2004, and references therein).

Chemical reactions in crowded environments show
fractal-like kinetic properties(Kopelman, 1986, 1988).
Berry (2002)andSchnell and Turner (2004)implemented a
lattice gas automata method using a Monte Carlo algorithm
on a two dimensional square lattice with cyclic boundary
conditions. Each molecule is mobile on the lattice through
diffusion, modelled by independent nearest-neighbour ran-
dom walks of the individual molecules. Time is split into
discrete steps and at each step molecules are selected at
random to take a single step in a random direction along
the grid. In this way, molecules move through the vol-
ume via two-dimensional random walks known as blind
ant processes(Majid et al., 1984). When two compatible
molecules collide, they react with a certain probability.
For enzyme-catalysed reactions, enzyme–substrate complex
molecules when randomly chosen may also spontaneously
disassociate with a set probability. Obstacles are represented
as an extra, non-reactive, immobile molecular type. The co-
ordinates of the position of every molecule and occupancy
status of each lattice site are stored and used for analysis.
At any moment of the simulation, one given lattice site
cannot be occupied by more than one molecule.

In our simple model of the Michaelis–Menten reaction
(1), the rate coefficientsk1, k−1 andk2 are modelled by the
reaction probabilitiesf , r andg, respectively where

• f is the probability that an enzyme and substrate molecule
will react to form a complex molecule (E+S → C) given
that they have collided on the lattice,

• r andg are the probabilities that when randomly selected
by the Monte Carlo method, a given complex molecule
will disassociate into respectively an enzyme and sub-
strate molecule (C → E+S) and an enzyme and product
molecule (C → E + P).

Thus, we expect for a sufficiently large system, or for the
averaging of the data from sufficient repetitions of the simu-
lation, that the numerically derived rate coefficientsk1, k−1
andk2 will respectively tend to the reaction probabilitiesf, r

andg.
This simulation method differs from the stochastic sim-

ulation algorithm ofGillespie (1977)in one crucial way:
Gillespie’s Exact Algorithm utilises the spatial homogeneity
of the reaction environment to derive a probability distribu-
tion for the time between elementary reaction events. The
algorithm then samples randomly from this distribution to
simulate the dynamics of the reaction. In contrast, the Monte
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Carlo method assumes only that the molecular motion is
Brownian in nature—i.e. that it progresses via individual
molecular random walks over a discrete lattice. As such, the
time between second order reaction events does not conform
to a pre-determined probability distribution, but rather is dic-
tated by two factors: firstly, the chance occurrence of two
random walks bringing together two molecules on the same
site simultaneously. Secondly, the preset reaction probabil-
ities dictating how likely two co-incident molecules are to
react.

At the beginning of each simulation, theE and S

molecules and the obstacles (if present) are placed on the
lattice by randomly choosing the co-ordinates for each of
them. At each Monte Carlo sequence, a “subject” molecule
is chosen at random and moved/reacted upon according to
the following rules:

1. Randomly choose nearest neighbour “destination” site.
2. If the “subject” molecule isE, S or P and destination

site is empty, move to it.
3. Otherwise

3.1. If the “subject” molecule isE or S and the molecule
occupying the “destination” site (“target” molecule)
is respectivelyS or E, then generate a random num-
ber between 0 and 1. If this is lower than reaction
probabilityf , replace the “target” molecule withC,
remove the “subject” molecule and setγ = γ + 1,
where γ(t) is simply a counter of the number of
E + S → C reactions that have occurred in time
interval [0, t].

3.2. If the “subject” molecule isC, check vacancy
of nearest neighbour sites. If at least one nearest
neighbour site is vacant, randomly choose a vacant
“destination” nearest neighbour site and generate a
random numberx between 0 and 1.

3.2.1. If x < r placeE on the “subject” site andS on
the “destination” site. This step corresponds to the
elementary reactionC → E + S.

3.2.2. If r ≤ x < r + g placeE on the “subject” site and
P on the “destination” site. This step corresponds
to the elementary reactionC → E + P .

3.2.3. If x ≥ r + g moveC to the “destination” site.

4. Otherwise, keep “subject” molecule on initial site. No
movement or reaction occurs.

For each time step, the Monte Carlo sequence is repeated
ntotal(t) times, wherentotal(t) is the number of distinct
molecules on the lattice (excluding obstacles) at timet.
Despite a fully conservative system where no molecules are
created or destroyed, the total number of distinct molecules
ntotal changes over time because when anE and anS

molecule combine to form aC molecule, we have one fewer
distinct molecule in the system. Setting this number of rep-
etitions ensures that one time unit statistically represents
the time necessary for each molecule to move once. The
simulation proceeds until a predetermined final time point.

The net rates for bimolecular reactions, averaged over
the spatial grid, have been found to decrease with time,
following a phenominological time-dependent relationship
k(t) = k0(τ + t)−h, wherek0 is the ideal (dilute solution)
rate constant, and the positive parametersh andτ are found
to depend on the number and arrangement of the obstacles
(Schnell and Turner, 2004). In diffusion-limited reactions
the rate depends on the geometry of the obstacles, leading to
fractal-like effects in the reaction rates that are hardly sep-
arable from the purely geometric effects(Kopelman, 1986).
Numerous studies have been made to tabulate the values of
fractal-like scaling exponents for reactions in different ge-
ometries (see, for example,Ahn et al., 1999, and references
therein).

The lattice gas approach offers the significant benefit of
being able to incorporate a non-homogenous environment.
However, this benefit comes at a large computational cost.
Fig. 4(a) shows the time taken to perform 10 runs of the
SSA (blue/circle symbols), a two-dimensional lattice gas al-
gorithm (green/plus sign symbols) and a three-dimensional
lattice gas algorithm (red/triangle symbols) for various sizes
of simulation environment on a 2.8 MHz Intel Pentium4 run-
ning MATLAB within Microsoft Windows XP. For the lat-
tice gas simulations, the term “volume” refers to the total
number of grid elements present on the two-dimensional or
three-dimensional lattice.

As is evident from the figure, all three approaches scale
approximately linearly with volume, but with the lattice gas
approaches growing in cost at at a far higher rate than the
SSA. The three-dimensional lattice gas simulations have
an additional premium due to the increased overhead of
database searching through three-dimensional rather than
two-dimensional data arrays. It is also worth noting when
comparing two-and three-dimensional systems that for a
given volume they have the same number of elements, so the
three-dimensional cube will be of much smaller side length
than its equivalent two-dimensional square.

Fig. 4(b) shows the variation in computational load for
the two- (green/plus sign symbols) and three-dimensional
(red/triangle symbols) lattice gas approaches as a function
of obstacle density,θ. Evidently, the computational over-
head increases withθ as expected until approximatelyθ =
θc (∼0.5) at which point the load tails off. This drop off is
likely to be due to the formation of isolated sub-volumes
within the reaction environment whenθ > θc, thus reduc-
ing the frequency of reaction events and consequently the
computational load.

We must also acknowledge that the lattice gas simulations
represent a simplified picture of the cellular environment.
They model reactions in fully conservative conditions where
no external factors have an effect on the observed kinetics.
They also allocate structure to the environment in an entirely
random fashion, in contrast to the highly organised structure
of living cells (Kuthan, 2001). The lattice gas automata al-
gorithm has restricted the motion of our reactant molecules
to discrete jumps in restricted directions where in reality,
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Fig. 4. Benchmarking results for the stochastic simulations. We compared the simulation time (s) for the Gillespie algorithm simulations (blue/circle
symbols), two-dimensional (green/plus sign symbols) and a three-dimensional (red/triangle symbols) lattice gas algorithms. (a) Average simulation time
in seconds for various sizes of the simulation environment. (b) Average simulation time in seconds as a function of obstacle density,θ, for the lattice
gas simulations.

the movement of these reactants will be entirely continuous.
These restrictions may potentially have unforseen effects on
the overall dynamics of the simulated reaction in terms of
the size of the lattice and its mesh size. Furthermore, from a
physical point of view, the simulations conserve momentum
within the cell only on average, with individual reactants
changing direction entirely independently. Thus, it is impor-
tant to verify the extent to which the results of the lattice gas
automata conform to well understood in vivo experimental
results.

6. Discussion and conclusions

Several levels of detail have traditionally been employed
in modelling biochemical reactions and pathways(Crampin
et al., 2004). The most detailed level of description is the
chemical kinetics approach, in which the concentrations (or
numbers) of the molecules involved in reactions are mod-
elled over time. Normally, the kinetic models consist of a
system of ODEs that can be analysed with nonlinear dy-
namics techniques and numerically computed with standard
software packages. Unfortunately, the representation of a
biochemical reaction as system of ODEs is completely de-
terministic and does not take into account the random noise
of fluctuations in concentration within the cell.

The stochastic kinetic modelling approach provides a
more detailed description for reactions than the systems
of ODEs. There are numerous stochastic approaches for
modelling reactions, but they are difficult to implement an-
alytically and researchers are reduced to numerical studies
(see, for a review,Burrage et al., 2004). Another caveat to
the use of stochastic modelling is that the appropriate ap-
proach to describe the fluctuations of biochemical reactions
must be used. There are clearly two sources of fluctua-

tions in in vivo biochemical reactions: (i) small numbers
of molecules—simulated typically in reactions involving
protein–DNA binding, transcription and translation—and
(ii) limited diffusion effects due to the structural organisa-
tion of the cytoplasm and the macromolecular crowding.

The Gillespie approach is an efficient method to model
chemical reactions taking into account the effects of low
molecular populations. Having introduced the key properties
of the stochastic approach to biochemical kinetics and im-
plemented Gillespie’s SSA to model the Michaelis–Menten
mechanism, we have shown that results from the stochastic
and deterministic methods are consistent. Even in highly mi-
croscopic environments, mean data from the SSA(Gillespie,
1976, 1977)was seen to coincide closely with the predictions
of the law of mass action confirming that the two approaches
remain consistent on average for large and small systems
(Gillespie and Mangel, 1981). We have demonstrated this
in the case of the Michaelis–Menten mechanism, where the
deterministic approach remains in close agreement with the
stochastic approach even when considering highly micro-
scopic environments with as few as 100 molecules present.
This suggests that when considering reaction kinetics in vivo
the deterministic approach can indeed be a valid one to use.

We have discussed the benefits and potential problems of
incorporating the QSSA into the stochastic approach, along
with attempts to take account of the finite timescale of indi-
vidual reaction cycles. We have also discussed attempts to
improve on algorithmic efficiencies through theτ-leap and
more general approaches, sampling either from a Poisson
or Binomial distribution. There is strong evidence that sam-
pling from the Binomial distribution confers greater robust-
ness and improved efficiencies.

However, such approaches have their own difficulties in-
volving assumptions that molecules act as dimensionless
point-particles and environments are entirely homogeneous
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and well stirred, ensuring the probability of a molecule ex-
isting in any sub-region of the vessel is equal across the
whole volume. These assumptions render these approaches
unsuitable for incorporating the fluctuation effects of limited
diffusion due to the cytoplasm structure and macromolecu-
lar crowding.

The diffusion-limited reaction kinetics differ significantly
from the classical kinetic approaches. In most of the lim-
ited diffusion stochastic approaches presented in the litera-
ture (seeCalef and Deutch, 1983, for a review), the kinetics
laws resemble mass action kinetics laws: reactions are driven
by time independent rate constants, which are proportional
to the microscopic diffusion constants of the reactants. The
stochastic approach is based on the mean square displace-
ment, which is linear in time for homogeneous systems. Al-
ternative approaches can be based on the first passage time
or on the exploration space(Kopelman, 1986); “fractal-like
kinetics” is one such approach.Tian and Burrage (2004b)
have also found that the standard rate constant can be inap-
propriate in certain genetic regulatory networks.

Recently two-dimensional Monte Carlo simulations in-
corporating immobile obstacles have been introduced to
model limited diffusion biochemical reactions(Berry, 2002;
Schnell and Turner, 2004). Results from this approach have
shown that the kinetics of the reaction are indeed altered
by the presence of heterogeneities, and this effect is well
modelled by the “fractal-like kinetics”. Thus, this Monte
Carlo simulation appears to be the most promising stochas-
tic technique for modelling in vivo biochemical kinetics as
it can take into account both the small number of reacting
molecules and the limited diffusion. This approach can be
improved by simulating an environment more closely rep-
resentative of a living cell and no longer considering the
system in isolation. It could certainly yield a detailed pic-
ture of the behaviour of a biochemical pathway. However,
this completeness would come at a high computational
cost and does not provide an analytical treatment to further
our understanding of the system under consideration. It is
worth making the effort of implementing the SSA to the
analytical description of the fractal-like kinetics approach
in order to obtain a more computationally efficient method
for modelling reactions in in vivo conditions.
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