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Abstract How cells utilize intracellular spatial features to opti-
mize their signaling characteristics is still not clearly understood.
The physical distance between the cell-surface receptor and the
gene expression machinery, fast reactions, and slow protein dif-
fusion coefficients are some of the properties that contribute to
their intricacy. This article reviews computational frameworks
that can help biologists to elucidate the implications of space
in signaling pathways. We argue that intracellular macromolec-
ular crowding is an important modeling issue, and describe how
recent simulation methods can reproduce this phenomenon in
either implicit, semi-explicit or fully explicit representation.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Systems biology brings engineering disciplines such as con-

trol systems and signal processing into molecular biology at

the level of biomolecular interaction networks, or pathways.

Dynamical system characteristics and signal response func-

tions of cellular signaling pathways are some of the main top-

ics in systems biology.

Extracellular signals captured by receptor proteins on the

cell surface are transduced inward to control target proteins

or gene expression. Two interconnected underpinnings of this

cellular response are molecular mobility (e.g., diffusion and ac-

tive transport) and the signal transduction reactions. Despite

its equal importance, little attention has been paid to the for-

mer biophysical properties of the cellular environment, which
Abbreviations: 3D, three-dimensional; BD, Brownian dynamics; CA,
cellular automata; DPD, dissipative particle dynamics; FCS, fluores-
cence correlation spectroscopy; FRAP, fluorescence recovery after
photobleaching; GFRD, Green�s function reaction dynamics; HP,
hydrophobic-polar; LB, lattice Boltzmann; MD, molecular dynamics;
ODE, ordinary differential equation; PDE, partial differential equation

*Corresponding author. Present address: The Molecular Sciences
Institute, 2168 Shattuck Ave., Berkeley, CA 94704, USA.
Fax: +1 510 547 0699.
E-mail address: shafi@e-cell.org (K. Takahashi).

0014-5793/$30.00 � 2005 Federation of European Biochemical Societies. Pu

doi:10.1016/j.febslet.2005.01.072
can contribute to overall signaling characteristics of the system

by introducing non-linear signal delays. The Stokes–Einstein

relation implies slow liquid phase diffusion speed of protein

macromolecules, which are key players in the signaling. The

significance of diffusion in reaction–diffusion systems becomes

marked when reactions are comparatively faster than diffusion

rates. The phosphorylation state of target molecules with

spatially separated membrane-localized protein kinases and

cytosolic phosphatases depends heavily on diffusion [1]. Sub-

compartments diffusively formed by localized proteins can sig-

nificantly alter the effect of noise on signaling outcomes [2],

implying the crucial coupling of noise and diffusion.

Extremely high protein density in the intracellular space,

commonly called molecular crowding, can magnify the spatial

effect. In a typical cell, the total macromolecular density is 50–

400 mg/ml [3], far higher than typical in vitro conditions (1–

10 mg/ml). If a solution contains 30% by volume of identical

globular molecules, less than 1% of the remaining space is

available to an additional molecule of the same size due to

the excluded volume effect caused by steric repulsion, resulting

in a mutual impenetrability of macromolecular solutes [4]. In

such an environment, slow (5–20 times lower than saline solu-

tions) apparent translational diffusion speed is observed [5],

which in turn is caused by anomalous diffusion. Anomalous

diffusion is defined as sub-linear scaling of mean-squared dis-

placement of the molecule over time, and is used as a measure

for cytoplasmic crowding [6]. Molecular crowding can also al-

ter protein activities and break down classical reaction kinetics

[7]. Minton has given excellent reviews about recent works on

the influence of molecular crowding on thermodynamics and

volume exclusion, including experimental findings, non-steric

(weak) interactions, and biochemical reactions in physiological

media [8,9].

In the remainder of this article, we review the computational

frameworks that can be used to model and simulate the conse-

quences of spatial features. Although we will mainly consider

cytosolic signaling pathways, most discussions in this paper

should also be applicable to other cellular phenomena that in-

volve diffusion-limited reactions and localized proteins. This

paper is written to attract the community�s attention to the

importance of considering space when modeling biochemical

signaling cascades and other cellular phenomena. Due to the

length limitation, however, this article is not intended to be a

complete review of all aspects of the spatial effects and model-

ing issues. Interested readers are referred to other review and

research papers.
blished by Elsevier B.V. All rights reserved.
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2. Spatial simulation methods

With the recent realization of the importance of noise in

cellular information processing [10], preference for stochastic

discrete-events [11] to conventional ordinary differential equa-

tions (ODEs) has become the norm in biochemical simula-

tions. However, as we have seen above, the coupling of

space with noise should be addressed when the effect of pro-

tein localization is to be investigated [2]. Therefore, the pref-

erence for stochastic methods should be retained in spatial

simulations.

Ideally, to reproduce the crowding effects and protein local-

izations in silico, spatial simulation methods should be able to

depict coarse-grained shapes and sizes of molecules and their

positions in three-dimensional (3D) space. Proteins stay local-

ized at certain parts of the cell as a result of cell compartmen-

talization and non-covalent weak interactions such as ionic,

van der Waals, hydrogen bonds and hydrophobic-polar (HP)

interactions [12]. Weak interactions, which can also influence

the reaction and diffusion rates of molecules should be consid-

ered during simulation [8,13]. More importantly, simulation

approaches should be computationally scalable to support

simulation of large intracellular systems. A summary of meth-

ods exhibiting these simulation requirements is presented in

Table 1. We discuss these methods in the following sections.

2.1. Molecular dynamics

Motions regulating all molecules constituting the cell arise

from fundamental physical rules. By computing the forces

affecting every molecule from some many-body potential in a

particle space (Fig. 1(a)) and numerically integrating Newton�s
laws over a small discrete time-step, the molecular dynamics

(MD) approach could potentially be used to compute the mac-

roscopic behavior of molecules in a system [14]. The computa-

tional cost of MD simulation increases linearly with the

number of interacting atoms [15]. Despite being the most accu-

rate and fundamental approach [16], MD cannot be used to

simulate whole cell systems, which consist of very large num-

ber of atoms arising from macromolecules. It has only been

used in problems involving time-scales of nanoseconds and

space-scales of tens of nanometers. For example, it was em-
Table 1
Spatial simulation methods

Method Space Scale Time

MD Particle Micro DES
BD Particle Micro DES
GFRD Particle Micro DEV
Smoldyn Particle Micro DT
Lattice Gas CA Discrete Micro DT
Weimar CA Discrete Meso DT
Spatial Gillespie Discrete Meso DEV
PDE Mesh Macro DES
Gillespie – Meso DEV
ODE – Macro DES

Some methods that can be used in simulation of biochemical pathways w
comparison. MCell, DPD, and some variations of CA introduced in the text
reactions effectively. Space: see Fig. 1. Scale: In �Micro�-scopic methods, each
object with a position either in a continuum space or a discrete lattice. �Ma
tration gradient. There are many possible �Meso�-scopic schemes between mac
discretely, but do not track positions in a compartment or within a subvolum
event, discrete-time, and numeric solution of a continuous differential equatio
if the method can represent the excluded volume effect [8]. See the text fo
represent excluded volume effect. Weak: the weak molecular interactions.
ployed to illustrate the effects of cellular crowding on a small

number of molecules [17,18].

The dissipative particle dynamics (DPD) simulation ap-

proach [19,20] is a coarse-grained approximation of MD. It

was applied in a hydrophobicity study of a protein aggregation

system which was at least three orders of magnitude larger

(�20 000 nm3) than previous investigations [21]. In spite of

its reduced computational costs and support for weak interac-

tions, DPD currently cannot be used in cell simulations be-

cause it does not permit biochemical reactions.

2.2. Partial differential equations

While the MD simulation approach deals with reaction and

diffusion at the molecular level (i.e., micro-scale), the spatial

partial differential equations (PDEs) approach, on the other

hand, computes the intracellular kinetics at the macroscopic le-

vel. The Virtual Cell [22] employs PDEs with the finite volume

method to correspond to reaction and diffusion rates of mobile

molecules in its spatial simulation framework. Compartments

in the framework can be adopted to depict the cell�s spatial

structures. These compartments are further divided into finite

subvolumes through a mesh-generator (Fig. 1(e)). Numerical

methods are used to solve the differential equations. Finer

time-step and subvolume sizes produce more accurate solu-

tions but with higher computational overhead. Despite being

one of the most computationally scalable spatial simulation

algorithms, PDEs cannot accurately represent intracellular

noise because it is a deterministic approach. Noise has pro-

found implications, especially when the number of molecules

is small (e.g., transcription factors) [10]. Moreover, noise is fur-

ther amplified in finite subvolumes such as the one used by the

Virtual Cell because molecule numbers in each subvolume will

be smaller than when they are taken as a whole [2]. Stochastic-

based simulation approaches should be considered in such

conditions. Next, we look at other methods which are more

sophisticated than spatial PDEs, but unlike MD, are still com-

putationally tractable.

2.3. Brownian dynamics

Brownian dynamics (BD) is a stochastic simulation ap-

proach with continuum space and time. In this particle-based
Stochastic Excluded Weak References

� + + [17,18]
+ + + [23,39]
+ + � [24]
+ � � [25]
+ + � [33]
+ + � [36]
+ � � [45,46]
� � � [22]
+ � � [11]
� � �

ith space are listed. Non-spatial Gillespie and ODE are included for
are not shown due to their inability to represent cytosolic biochemical
instance of molecule is distinguished from others, and modeled as an

cro�-scopic schemes represent the system state as a mean-field concen-
ro and micro realms. Mesoscopic methods in this table treat molecules
e. Time: time-stepping scheme. �DEV�, �DT�, and �DES� mean discrete-
n system, respectively. Stochastic: if the method is stochastic. Excluded:
r the explanation of why Smoldyn and spatial Gillespie cannot fully



Fig. 1. Representations of space. In �Particle� space, molecules are represented as individual particles with positions in a continuum space. (a) Particles
are usually given motions according to some kind of force equations that are numerically integrated to advance time. Reactions are represented as
collisions between particles. (b) Some methods including GFRD employ an optimization technique that allows particles to �jump� in time and space
by calculating the maximum distance (Dr) that the particle can travel in the time slot. �Discrete� space representation discretizes the space either by
subvolumes (voxels) of an identical shape (typically cubic) or a regular lattice. (c) In this �microscopic� lattice, at most one particle is allowed to
occupy a lattice site. (d) Some methods allow multiple particles to reside in a single lattice site. This class of discrete space representation is often
called mesoscopic. (e) �Mesh� space in this paper means conventional structured or unstructured meshing schemes of a concentration field. (f) Non-
spatial biochemical simulators usually make use of �Compartmental� space, which assumes a chemical equilibrium in each compartment, and
molecular transfers between compartments are not modeled as implicit built-in rules in the simulation method (such as diffusion), but in an explicit
way such as membrane transporters.
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approach (Fig. 1(a)), the molecules exhibit noise as they are

propagated according to the Langevin equation. The equation

contains random forces that are intended to represent the

interaction between the diffusing and the implicitly represented

solvent molecules. BD has been applied successfully to investi-

gate electrostatic competition effects between substrates bind-

ing to an enzyme [13] and to observe how crowder molecules

influence the GroEL–GroES chaperonin machinery at the

atomic scale [23]. Hence, this approach can effectively simulate

crowded environment, given that the crowder molecules are

explicitly represented in the simulation space. Such representa-

tion, however, will incur very high computational costs, owing

to the increased frequency of collision events and the smaller

time-steps required to resolve them.

BD can be viewed as a numerical procedure to solve the

Smoluchowski equation, which describes the diffusive

encounter of molecules in solution. On the other hand, for

two-body problems, it is possible to analytically solve the

equation by using the Green�s function. This approach was

adopted by van Zon and ten Wolde when they developed

an event-driven simulation algorithm called Green�s function

reaction dynamics (GFRD) [24] (Fig. 1(b)). The basic idea is

to reduce the many-body problem that constitutes the bio-

chemical system into a set of two-body problems by deter-

mining the length of the timestep to be sufficiently small.

Although, GFRD permits larger time-steps when the particles

are too far apart to react, this advantage is lost when simu-

lating crowded environments. This is because GFRD retains

the drawbacks of BD, which is the dependency of step sizing

scheme to the frequency of collision events. Additionally, it

also does not consider weak interactions between molecules.

Nevertheless, this method can represent the excluded volume
effect and active transportation, and can give different sizes

and shapes to molecules.

Smoldyn (Smoluchowski dynamics) [25] is another approach

to numerically realize the Smoluchowski model of diffusion-

limited reactions. The molecules are represented as point par-

ticles (Fig. 1(a)) with binding and unbinding radii, which are

computed from each species� macroscopic reaction rates. A

disadvantage of discrete-time approaches in continuum space

such as Smoldyn is that it is possible to miss collisions when

the length of time-steps are set not sufficiently small. Smoldyn

can represent reduced diffusion speed in crowded environment

by placing impenetrable blocks in space [26]. One of the major

consequences of the excluded volume effect is the dependency

of the diffusive movements on physical sizes (and shapes) of

the diffusing molecules. Unlike GFRD, dimensionless particles

used in the current version of Smoldyn does not permit accu-

rate representation of the effect.

MCell [27] is a unique BD simulation approach that is spe-

cialized to simulate reactions between free-diffusing ligand

molecules and stationary surface receptors. The surfaces are

constructed using convex polygon meshes as illustrated in

Fig. 1(e). Its current version, however, does not support bimo-

lecular reactions in 3D space. MCell has recently been ex-

tended to run on distributed computing environment to

permit large scale simulations [28].

2.4. Lattice-based methods

Cellular automata (CA) is a lattice of uniform sites with a

finite number of states that evolves in discrete-time [29,30].

The transition of each automaton (i.e., molecule) at the sites

is fully specified in terms of its local interaction. The molecule

can propagate either along its velocity vector or according to
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its diffusion rate to arrive at another lattice site, and then col-

lide or react with other molecules. CA can be used to simulate

reaction and diffusion at both microscopic [7,31–34] (Fig. 1(c))

and mesoscopic (Fig. 1(d)) scales, having single and multiple

molecules at a site, respectively. Lattice size and geometry

(e.g., square, hexagonal or trigonal) can also influence the out-

come of simulation, as reported by Shimizu et al. [35] when

they analyzed the Escherichia coli chemotaxis signaling path-

way using a CA-based Ising model.

Large differences in molecule sizes and numbers in biological

cells motivated Weimar [36] to use CA to simulate enzymatic

reaction networks at both meso-scale (metabolites) and mi-

cro-scale (enzymes) simultaneously on a two-dimensional lat-

tice. This approach reduces a sizable amount of memory

requirement, especially when considering larger systems such

as the whole cell. The size of the lattice sites can be larger to

accommodate large molecules, and as a result, fewer sites will

need to be created and stored in the memory. The reduced res-

olution of the lattice would, however, translate to lower preci-

sion of the molecular diffusions at each time-step.

Tremmel et al. [37] took a step further by simulating diffu-

sion of plastoquinol molecules in a thylakoid membrane with

the integral thylakoid proteins having different shapes and

sizes. The simulation was carried on the same lattice at mi-

cro-scale. Some of the large integral thylakoid proteins were

stationary and could span more than a single site. Neverthe-

less, their CA implementation does not support biochemical

reactions.

Chan and Dill [38] introduced the HP lattice model which

takes into account the charges of molecules on the lattice. Ping

et al. [39] later extended this approach to include BD to inves-

tigate the effects of crowder molecules on protein folding and

stability.

For more accurate representation of the cell, 3D CA would

be required. The local interaction nature of CA makes it suit-

able for implementation on parallel architectures and hence,

supports reduction in the computational time required for

3D simulations. Examples of parallel 3D implementations in-

clude a life-like cell membrane simulation undertaken by the

CyberCell group [40] and an amphiphilic hydrodynamic simu-

lation work by Love et al. [41]. In the CyberCell approach, bio-

chemical reactions were not implemented, instead, the cell

membrane was simulated based on three variants of local

interactions between particles: (1) attraction, (2) dispersion

and (3) alignment.

At the completion of multiple CA simulation runs using the

same parameters and model, one can obtain each molecule�s
distribution function based on the average number of molecules

at a specific lattice site with a given velocity. Following this, the

lattice Boltzmann (LB) method [42] uses lattice sites to hold

each molecule�s distribution function instead of the molecules

themselves. In addition to parallel 3D simulations of amphi-

philic fluids [43], LB has been applied successfully in simula-

tions of chemical dissolution in porous media with molecular

diffusion, surface reaction and forced convection [44].
2.5. Spatial Gillespie

Stundzia and Lumsden [45] extended the Gillepie�s stochas-
tic approach [11] to be used in subvolumes for spatial simula-

tion. Their method was employed to simulate the propagation

of a calcium wave by reaction–diffusion across a cell. Elf et al.
[46], on the other hand, extended the fast version of the Gille-

pie�s algorithm, the Next Reaction [47] method, to be used in

subvolumes. The SmartCell simulator [48] also implements a

similar scheme. The subvolume sizes, as shown in Fig. 1(d),

are determined such that all reactive molecular species, repre-

sented as point particles, are almost uniformly distributed in

each subvolume�s space. This is done by ensuring that the dif-

fusion of reactants in a subvolume takes place more frequently

(e.g., more than 100 times) than their respective reactions. At

each time-step, each molecule can either react in its current

subvolume or diffuse to an adjacent one. The diffusional prob-

ability at each time-step is obtained by mapping the bulk dif-

fusion constant in Fick�s law using the Green�s function.

Similar to the original Next Reaction method, the computa-

tion time increases only logarithmically with the number of

subvolumes in the system. Nonetheless, it is not possible to

reproduce crowded conditions because volume exclusion from

both reactive and non-reactive crowder molecules cannot be

represented explicitly when they are depicted as point particles.
3. Data availability

Consideration for the balance between demand and avail-

ability of input data is extremely important for successful mod-

eling and simulation of real world systems. Here, we consider

simulation of a partial signaling pathway in a whole cell-scale

space.

In addition to conventionally used quantities in non-spatial

biochemical models, such as reaction rate constants and initial

concentrations, spatial methods may require knowledge about

(1) proteins� mobilities, and (2) their abundance and localiza-

tion in the cell. To model the mobility adequately, depending

on the modeling scheme being used, (a) translational diffusion

constants, and (b) existence and quantitative properties of ac-

tive transportations should be examined for all protein species

involved in the pathway. Additionally, if the crowded environ-

ment is taken into account, sizes (which could be to some ex-

tent estimated from molecular weights assuming a globular

shape) and localization of all macromolecular species present

in the target cell must be measured or estimated to give a

�crowding map� in the simulation.

Despite the seemingly exploding demand for numbers, re-

cent advancements in measurement technologies and bioinfor-

matics are making the picture not entirely pessimistic. An

optical technique called fluorescence correlation spectroscopy

(FCS) [49] can be used to access information about (1) local

concentrations, (2) apparent translational diffusion constants,

(3) non-Brownian movements such as active transport and

anomalous sub-diffusions [50] of fluorescent proteins.

Although highly sensitive and versatile, a drawback of FCS

is its inability to examine cells smaller than the detection vol-

ume of about 1 femto-liter, which is about the size of an E. coli

cell. Fluorescence recovery after photobleaching (FRAP) is an-

other measurement technique for apparent diffusion constants

that makes use of fluorescent proteins [51], even though it can-

not quantify anomalous diffusion, immobility and active trans-

port of proteins. FRAP has been successfully used for E. coli

cells [5], which are generally too small for FCS.

It would be possible to computationally construct the

crowding map from the archives of protein localization GFP
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images available through the Yeast GFP Fusion Localization

Database 1 for yeast cells and the GenoBase 2 for E. coli cells.

Molecular weights and other properties of the proteins in

various organisms can be obtained from UniProt 3 and

Ensembl. 4
4. Discussion

The significance of molecular crowding with regard to bio-

chemical simulation is twofold [33]. First, the apparent diffu-

sion constant D is no longer a constant, but is a function

that depends on interactions of the size, shape, and chemical

properties of the molecule and the crowder agents. This makes

it difficult to quantify diffusion speed without conducting in

vivo measurements or detailed microscopic simulations. Sec-

ond, high macromolecular densities increase effective protein

concentrations (activity coefficients), and make reaction kinet-

ics fractal. This suggests a preference for explicit modeling of

crowding environments over an implicit representation which

simply lowers diffusion coefficients and increases reaction rate

constants k in normal reaction–diffusion simulations. The ex-

plicit representation may be either in a semi-explicit way using

a field of total protein density (�crowding map�) and making D

and k density-dependent, or fully explicitly using crowding

particles.

Among the computational approaches presented in this pa-

per, the class of methods based on CA is promising, in terms of

its versatility, simplicity and scalability. Considering that CA is

currently one of the most actively studied methods for

(bio)physical simulations, it would not be surprising to see a

variation of it that works as a standard way of spatial bio-

chemical simulations in near future. By consolidating the ap-

proaches, described by Weimar [36], Tremmel et al. [37] and

Chan and Dill [38], it would be possible to arrive at an ideal

CA-based approach that meets all of the simulation require-

ments with fully explicit representation of crowding. One prob-

able remaining drawback is the very large computational time

arising from simulation of whole cell systems. However, CA is

one of the computational frameworks that are most efficiently

parallelizable, as exemplified by, among many others, the

CyberCell [40] or the Love group [41].

Ideally MD or BD should give the most precise computa-

tional reproduction of the intracellular dynamics with crowd-

ing and weak interactions, but digital computers may not

become fast enough to simulate on physiological timescales

for years to come. Replacing the Green�s function in GFRD

by some kind of non-Gaussian function that models anoma-

lous diffusion could potentially produce an approximate meth-

od with the semi-explicit treatment for the crowding that can

overcome the degraded speed in highly crowded simulations.

Although it is based on gas-phase kinetics and can treat

crowding consequences only implicitly, spatial Gillespie class

of methods has a good chance to find many useful applica-
1 http://yeastgfp.ucsf.edu/

2 http://ecoli.aist-nara.ac.jp/GenoBase/index.html

3 http://www.uniprot.org/

4 http://www.ensembl.org/
tions in areas where spatial resolution of protein localization

can be treated crudely and the effect of crowding can be ig-

nored, due to its extremely high efficiency. The standard

Gillespie�s Next Reaction method has been implemented on

parallel architectures and favorable speedups have been re-

ported [52,53] with increasing number of processors. Simi-

larly, the spatial Gillespie class of methods is also a good

candidate for parallelization because of its local interaction

nature between the subvolumes.

No single simulation method is likely to work effectively

and efficiently for highly heterogeneous and multi-scale sys-

tem like the cell [54]. This becomes apparent for simulation

of signaling pathways when the model includes small mole-

cules and proteins that have different scales of diffusion

speed. Investigation of coupling effect of the signaling system

with other cellular phenomena such as metabolic reactions

and gene expression is another interesting application of sim-

ulation that introduces multi-scaleness in time, space and

concentration. The multi-algorithm framework that combines

modular submodels driven by different algorithms to make a

composite simulator is a feasible solution for this problem

[55]. An integrative cellular model constructed on this frame-

work, for example, may have a modular architecture that has

slow-diffusing protein molecules on CA, small molecules that

have little effect from crowding on spatial Gillespie, gene

expression on Gillespie and slow reactions in metabolism

on ODE.
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