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Abstract

In this paper we give an overview of some very recent work, as well as presenting a new approach, on the
stochastic simulation of multi-scaled systems involving chemical reactions. In many biological systems
(such as genetic regulation and cellular dynamics) there is a mix between small numbers of key regulatory
proteins, and medium and large numbers of molecules. In addition, it is important to be able to follow the
trajectories of individual molecules by taking proper account of the randomness inherent in such a system.
We describe different types of simulation techniques (including the stochastic simulation algorithm, Poisson
Runge—Kutta methods and the balanced Euler method) for treating simulations in the three different
reaction regimes: slow, medium and fast. We then review some recent techniques on the treatment of
coupled slow and fast reactions for stochastic chemical kinetics and present a new approach which couples
the three regimes mentioned above. We then apply this approach to a biologically inspired problem
involving the expression and activity of LacZ and LacY proteins in E. coli, and conclude with a discussion
on the significance of this work.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

There is now considerable evidence from both theoretical and experimental perspectives of the
role of noise in genetic regulation. Federoff and Fontana (2002) remark that “‘stochasticity is
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evident in all biological processes. The proliferation of both noise and noise reduction is a
hallmark of organismal evolution.” However, a natural question to ask is what is the nature of
this stochasticity? Hume (2000) notes that “‘transcription in higher eukaryotes occurs with a
relatively low frequency in biologic time and is regulated in a probabilistic manner.” The
comment about “low frequency” is significant here and we will return to this later.

Gene expression within a cell is a complex process involving such factors as chromatin
remodelling, transcription, the export of RNA and the translation of mRNA into proteins.
Physiological activity and cell differentiaton within a mammalian cell is controlled by perhaps
more than 10,000 protein coding genes and thousands of genes are expressed at very low copy
numbers. This means that new gene profiling techniques such as microarrays may not be able to
reliably detect these numbers. Thus there is a great need for good models and effective simulations
to guide the experimentalist and to provide additional insights into the nature of genetic
regulation, see, for example, Kepler and Elston (2001) and McAdams and Arkin (1999).

Sano et al. (2001) remark that “initiation of gene transcription is a discrete process in which
individual protein-coding genes in an off state can be stochastically switched on, resulting in
sporadic pulses of mRNA production.” This is the dichotomy that we must resolve—proteins are
discrete objects, yet their effects are often modelled (as ordinary differential equations) in terms of
concentrations.

This leads us to the modelling process of how to represent genetic regulation mathematically.
There are many approaches. These include:

e Directed graphs in which the genes are vertices and the gene interactions are the edges;

e Bayesian networks in which the vertices correspond to random variables that describe an
expression while the network defines a joint probability density function;

e Boolean networks in which a gene is either in an on or off state;

e Ordinary differential equations in which chemical kinetics rate equations are used to represent
protein concentrations;

e Partial differential equations in which the spatial structure of cells are taken into account; and
finally

e Stochastic differential equations in which we have to resolve the issue of whether we work with
concentrations or with individual molecules.

As the previous discussion would suggest we can consider three different types of modelling
regimes for understanding genetic regulation. These include the discrete and stochastic, the
continuous and stochastic and the continuous and deterministic.

Essentially, the characterisations of these regimes depend on the nature of the reactions and the
number of molecules in the system being studied. In this paper the focus will be on mixed systems
with small numbers of key regulatory proteins and a mix of medium and large numbers of other
types of molecules. The basis of our work is the stochastic simulation approach to biochemical
reactions which was developed by Gillespie (1977) through the stochastic simulation algorithm
(SSA). This is an essentially exact procedure for numerically simulating the time evolution of a
well-stirred chemically reacting system by taking proper account of the randomness inherent in
such a system. It is rigorously based on the same microphysical premise that underlies the
chemical master equation (Gillespie, 1992b) and gives a more realistic representation of a system’s
evolution than the deterministic reaction rate equation (RRE). In particular, the RRE is entirely
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inappropriate if the molecular population of some critical reactant species is so small that
microscopic fluctuations can produce macroscopic effects. This is especially true for the genetic/
enzymatic reactions in living cells. As with the chemical master equation, the SSA converges, in
the limit of large numbers of reactants, to the same solution as the law of mass action.

Despite continued refinements to the numerical methods used in the SSA, it remains a
computationally demanding approach limiting its applicability, especially for large reaction
networks required for modelling most realistic gene networks. The algorithm takes time steps of
variable length, based on the rate constants and population size of each chemical species. The
probability of one reaction occurring relative to another is obtained by multiplying the rate
constant of each reaction with the numbers of its substrate molecules. According to the correct
probability distribution derived from the statistical thermodynamics theory, a random variable is
then used to choose which reaction will occur, and another random variable determines how long
the step will last. The chemical populations are altered according to the stoichiometry of the
reaction and the process is repeated. The cost of this detailed SSA is the large amount of
computing time. The key issue is that the time step for the next reaction can be very small indeed if
we are to guarantee that only one reaction can take place in that time interval.

In recent years, the SSA has been successfully applied for simulating genetic/enzymatic
reactions in which the molecular population of some critical reactant species is relatively small, for
example, lambda phage, Arkin et al. (1998); and circadian rhythms, Elowitz and Leibler (2000),
Gongze et al. (2002). It has also been applied to much larger systems than originally designed for.
For example, Arkin et al. (1998) used the SSA to simulate a model of lambda phage containing 75
equations in 57 chemical species.

An alternative approach to the SSA is via the StochSim package developed initially by Morton-
Firth (1998) as part of a study of bacterial chemotaxis. The aim was to develop a realistic way of
representing the stochastic features of this signalling pathway and to handle the large numbers of
individual reactions encountered (Firth and Bray, 2000). Molecules or molecular complexes are
represented as individual software objects. Reactions between molecules occur stochastically,
according to probabilities derived from known rate constants.

StochSim works by quantising time into a series of discrete, independent time intervals, the sizes
of which are determined by the most rapid reaction in the system. At the start of the simulation,
the user assigns the maximum number of molecules in the system. In each time interval, a
molecule is selected at random and then another object (either a molecule or a pseudo-molecule) is
again selected at random. If two molecules are selected, any reaction that occurs is bimolecular,
whereas if one molecule and a pseudo-molecule are selected, it is unimolecular. Another random
number is then generated to determine if a reaction will occur. The probability of a reaction is
retrieved from a look-up table and if this exceeds the random number, the particles do not react.
On the other hand, if the probability is less than the random number, the particles react, and the
system is updated.

StochSim is likely to be slower than the Gillespie algorithm in calculating the eventual outcome
of a small set of simple biochemical reactions, especially when the number of molecules is large.
However, if the system contains molecules that can exist in multiple states, then StochSim may not
only be faster but also closer to physical reality. StochSim has been extended to incorporate
explicit spatial representation in which nearest-neighbour interactions of molecules (such as
clustered receptors on a membrane) can be simulated. Three geometries in two spatial dimensions,
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squares, triangles and hexagons, are supported and this work has been used in the prediction of
the structural arrangement of the chemotaxis receptor complex (Shimizu et al., 2000).

One of the great challenges in the efficient simulations of chemical kinetic systems is how we
deal with mixed systems in which some key species have low abundances (as is the case of some
molecules in genetic regulation) while other molecules have large abundances and can be modelled
via continuous SDEs. Thus a vital question to address is how we can link discrete and continuous
models and simulation algorithms in a sensible and efficient manner when treating chemical
kinetic systems?

Before we turn our attention to the main focus of this paper we feel that it is timely to make a
remark about rate constants in chemical reactions. As Schnell and Maini (2003) remark, ‘“‘many
biochemists have devoted their attention to the art of accurately determining the kinetic
parameters by employing the velocity expression rather than studying the conditions under which
the velocity expression can be used. As a consequence, the velocity equations of the catalytic
reaction have been employed on a number of occasions outside of the conditions for which they
are valid.”

Furthermore, experimental measurements are inherently inaccurate. Thus, Schnell and Maini
(2003) argue for the use of numerically fitting procedures for calculating kinetic parameters
from progress curves. In a subsequent paper, Schnell and Turner (2004) discuss how the
conventional equations based on rate constants fail to describe the reactions in vivo
conditions. When minimal obstructions to diffusion are present, the rate constant approach is
reasonable but in the presence of significant obstructions to diffusion, log(k) decays linearly on a
logarithmic time scale and so k is time-dependent. Thus Schnell and Turner present a modification
to fractal-like kinetics for biochemical reactions occurring in crowded intracellular, non-
homogeneous, environments. Spatial simulations of this approach give excellent agreement with
lattice gas data.

Thus this paper is organised in the following manner. In Section 2, we give a brief overview of
the SSA approach and discuss some new simulation techniques that have been developed to
overcome the inherent limitations of the SSA. In Section 3, we consider different ways of treating
the question we just raised including stochastic partitioning and our new approach for treating
fast, medium and slow reactions. In Section 4, we will investigate the performance of these new
ideas on a biologically significant problem and the paper will conclude in Section 5 with some
general remarks and discussion for future work.

2. Stochastic simulation methods for chemical reaction systems

In this section we will give a brief introduction to stochastic simulation methods for chemical
reaction systems. The first part of this section gives a brief overview of the three modelling regimes
described in the introduction. In doing so, we will make some assumptions that while restrictive
will allow us to make progress mathematically.

In particular, we will assume that we have a well-stirred mixture at constant temperature in a
fixed volume Q. This mixture consists of N>1 molecular species {Si, ..., Sy} that chemically
interact through M >1 reaction channels {Ry, ..., Ry/}. The restriction that Q is fixed can be
relaxed but we will not do that here.
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The dynamic state of this system is denoted as X(7) = (X,(¢), ..., Xn(2)) ", where X;(¢) is the
number of S; molecules in the system at time z. The initial state is given by X(¢9) = Xy. For each
J.j=1,...,M, we will define the propensity function a;(X) such that a;(X(¢)) dt is the probability
that given X(r) = X, one reaction R; will occur inside € in the next infinitesimal time interval
[#, £+ dp).

When that reaction occurs, X (¢) changes its state. The amount by which X; changes is given by
vji, which represents the change in the number of S; molecules produced by one R; reaction. The
N x M matrix v with elements vj; is called the stoichiometric matrix. In particular, if just the jth
reaction occurs in the time interval [z, 7 + d?), the jth vector v; of the stoichiometric matrix is used
to update the state of the system by

X(t+dt) = X(@) + v,

We see that the propensity functions and state-change vectors completely characterize the
chemical reaction system.

In the discrete and stochastic case the X;(#) represent the number of S; molecules at time ¢ and
thus X (7) takes on integer values in a non-negative integer lattice of dimension N. In fact X(7) is a
discrete (jump) Markov process. As such it has a time evolution equation associated with it which
describes the probability P(x, f|xg, fo) that X(z) = x given X (zy) = xo. This equation is called the
chemical master equation (CME) and it can be written as

P M
51)(% t1x0, to) = Zl(aj(x — Vi)P(x — vj, t1x0, to) — a;(x)P(x, t|x0, t0)).
=
In general, this discrete parabolic partial differential equation is too difficult to solve (either
analytically or numerically) and other techniques are needed to simulate the X (7).

This leads to the so-called SSA of Gillespie (1977), which is an exact and direct representation
of the evolution of X (7). There are several forms of this algorithm. The direct method works in the
following manner.

Method 1 (The direct method). With two independent samples r; and r, of the uni-
formly distributed random variable U(0,1), the length of the time interval [z,7+ df) is
determined by

1 1
dr = In{— ),
ao(X) <1’1>

where ay(X(¢)) is the sum of all the propensity functions
M

a(X) = an(X).

k=1

The determination of the specific reaction occurring in [z, ¢ 4+ d¢) is given by the index j satisfying

Jj—1 J
D a(X)<raX)< ) | aX).
k=1 k=1

The update of the system is then given by
X(t+d)=X@) +v;.
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The point about the SSA is that the time step 7 is taken small enough to guarantee that only one
reaction occurs in that time interval. Clearly the SSA can be very computationally inefficient
especially when there are large numbers of molecules or the propensity functions are large.

Now if the system possesses a macroscopically infinitesimal time scale so that during any dr all
of the reaction channels can fire many times, yet none of the propensity functions change
appreciably, then the jump Markov process can be approximated by a continuous Markov
process. This Markov process is described by the chemical langevin equation (CLE), which is a
stochastic ordinary differential equation (SDE)—see Gillespie (1992a). It takes the 1to form

M M
dX =" va(X) di+ Y vi/a(X) dW(), (1)
Jj=1 Jj=1

where the Wj(7) are independent Wiener processes.
The CLE represents processes in the intermediate regime, that is those processes that are
stochastic and continuous. A Wiener process is a stochastic process satisfying

E(W(t)) =0, E(W(t)W(s)) = min{t, s}.

It is known that the Wiener increments are independent Gaussian processes with mean 0 and
variance |t — s| (that is, N(0, |t — s])). Thus the Wiener increment AW(¢) = W(t+ At) — W(t) is a
Gaussian random variable N(0, A7) = \/AIN(0, 1).

The CLE is an example of the more general class of Ito stochastic differential equations
given by

d
dy(0) = go() dr+ > gi(0) dWi(0),  y(to) = yo, yeR". )
J=1

Thus, general classes of methods that can be used to solve (2) can also be used to simulate
solutions of (1), (see Kloeden and Platen 1992, for example).

Finally, the third regime occurs when the noise terms are negligible compared with the
deterministic term. This leads to the standard chemical kinetic approach that is described by the
reaction rate equations

M
X'(0)=>" va(X(1).
j=1

Recently, considerable attention has been paid to reducing the computational time of
simulation algorithms for stochastic chemical kinetics. Gibson and Bruck (2000) refined the first
reaction SSA of Gillespie by reducing the number of random variables that need to be simulated.
This can be effective for systems in which some reactions occur much more frequently than others.
A different approach is adopted by Rao and Arkin (2003) who simulate systems that have been
simplified by quasi-steady state assumptions. Resat et al. (2001) treat systems which have widely
varying rate constants by applying a weighted Monte Carlo approach.

Gillespie (2001) proposed two new methods, namely the t-leap method and the midpoint t-leap
method in order to improve the efficiency of the SSA while maintaining acceptable losses in
accuracy. The key idea here is to take a larger time step and allow for more reactions to take place
in that step, but under the proviso that the propensity functions do not change too much in that
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interval. Thus in the time interval [¢,¢+ 7) and with the present state X(¢) at time ¢z, then the
number of times that the reaction channel R; will fire is a Poisson random variable

Ki(mX.0) = P@(X), 0, j=1,.... M.

Here, the notation P(4, f) denotes a stochastic Poisson process with mean Az and variance At and
where

efﬂyt( i [)k
k'
These considerations lead to the t-leap method.

Method 2 (The t-leap method). Choose a value for 7 that satisfies the Leap Condition: i.e., a
temporal leap by t will result in a state change 4 such that for every reaction channel R;, |a;(X +
A) — a;(X)| is “effectively infinitesimal.”” Generate for each j = 1, ..., M a sample value k; of the
Poisson random variable P(a;(X), t), and compute 4 = ZJ[Z | kjv;. Finally, perform the updates by
replacing ¢ by ¢t + t and X by X + /.

Since the t-leap method uses the initial state X to approximate the states in the time interval
[z, + 1), its efficiency can be improved by computing a better approximation to the states in the
given time interval—for example, by an estimation at the midpoint 7+ t/2. This leads to the
midpoint t-leap method.

Method 3(The midpoint t-leap method). For the selected leaping time t (which satisfies the Leap
Condition), compute the expected state change l=1/ 22}‘1 1 4j(X)v; during the time period [z, 7 +
7/2). Then use the estimated state X’ = X + [4] to generate for each j = 1, ..., M a sample value k;
of the Poisson random variable P(a;(X’), 7). Compute the actual state change, 1 = Z]Ai 1 kjvj, and
perform the updates by replacing ¢ by t + 7 and X by X + A. Here [ ] denotes the integer part.

Burrage and Tian (2003) introduced the framework of Poission Runge-Kutta (PRK) methods
for simulating chemical reaction systems. These PRK methods are related to the class of
stochastic Runge—Kutta methods for solving stochastic differential equations driven by Wiener
noise.

The reason for adopting this framework is as follows. A Poisson random variable P(q;(X), 1)
with a large mean a;(X)t can be approximated by a Gaussian random variable N(a;(X)z, a;(X)1),
since

P(a;(X), 1)~ N(aj(X)t,a;(X)1) = af(X)t + \/a;(X)TN(0, 1),

where N(u,0”) is a Gaussian random variable with mean u and variance ¢>. This can be
viewed as

P(aj(X), 1) x aj(X)t + /a;(X)AW(1). (3)

Now, the simplest numerical method for solving (2) is the Euler—Maruyama method. It takes
the form

Pr(P(), 1) = k) =

d
Vet = Yu+hgo) + > AW g1 (), by = ta +
=

where AW_I.(”) = Wj(t, + h) — Wj(t,) is a Gaussian random variable N(0, ).
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The Euler—-Maruyama method converges with strong order 0.5 and weak order 1 to the It
form of the SDE. If it is applied to (1) it takes the form

M M
Xoor = Xo+1)_ viai(X) + > AW v/a(X,).

j=1 J=1

Now using the approximation in (3) we can write this as

M
Xoi1 = Xu+ ) viPla(X), ).
=1

This method is nothing but the 7-leap method of Gillespie. Thus the t-leap method is the Euler-
Maruyama method applied in the discrete setting when there are small numbers of molecules.

This has led Burrage and Tian (2003) to consider a general class of explicit PRK methods in
which s intermediate approximations are simulated within a given step. This class of method takes
the form

M
Yi=Xy+ > vicPul
k=1 j

N
Wiar(Y)),7), i=1,..,s,
=1

M K
Xoir = Xo+ > wePe(d | Biar(Y)),0).
k=1 j=1

In general, it is sufficient to consider simulation methods in which s is 1 or 2, and this gives rise to
a general class of two-stage methods of the form

M
Y - Xn + Z VkPk(Gak(Xn)a T):
k=1

M
Xn-H = Xn + Z VkPk((l - ﬂ)ak(Xn) + ﬁk(Y)’ T)'
k=1

This method can be viewed as the application of a two-stage Runge—Kutta method, which in
tableau form is given by

010 0
010 0 4)
1-p 8.

Runge-Kutta methods represent a very important class of methods for solving ordinary
differential equations (see Butcher, 1987). Note that if § = 1/20, (4) is of order two when applied
to ordinary differential equations of initial value type.

Burrage and Tian (2003) consider two new stochastic simulation methods with = 1/260: the
Heun PRK method (0 = 1) and the R2PRK method (0 = %). The latter is so-called because it is
directly related to the R2 method for solving Stratonovich SDEs (Burrage, 1999).

Rathinam et al. (2003) consider how stiffness manifests itself at both the continuous
deterministic and discrete stochastic levels. In this case explicit methods become impractical. The
authors construct two implicit versions of the explicit z-leap method known as the rounded and
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unrounded implicit z-leap method which have better stability properties than the explicit z-leap
method and are suitable for solving stiff chemical systems. The unrounded method has the form

M M
X1 = Xu+1)_ vi(@(Xar) — /(X)) + > viPiai(Xy), ),
= i1

but suffers from the drawback that X, ; — X}, is typically not an integer vector. Rathinam et al.
(2003) overcome this difficulty by a two-stage process which is similar to a prediction—correction
process given by

M M
X =X, +1) vi(a(X) = a(X)) + Y vPia(Xn), 0,
Jj=1 Jj=1

M M
Xor = Xo + Y wlt@i(X) — (X)) + > viPi(ai(X,), ),
J=1 j=1

where again [] denotes the nearest nonnegative integer.

Burrage and Tian (2003) have proposed a general class of Poisson Runge—Kutta methods that
allows for implicitness (as considered by Rathinam, for example) and takes the form in the
unrounded setting

M s M K
Ve X3 (z Ui,-akm)) 23w (z m,-akm),f), =1
k=1 j=1 k=1 j=1
M K M K
Yo — X, 473 0 (z a_,-akaz,-)) 3w, (z ﬁ,.akm),r),
k=1 = =1

j=1
and which is presented in tableau form as
u w
o P

The rounded setting formulation is obvious and not given here.
We now present two particular methods in this tableau form

e the general class of two stage explicit PRK methods is

0 0 0 0
0 0 0 0
0 0 1-1/20 1/20

e while the implicit t-leap method is
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The astute reader will note that in these cases
xe=0, pe=1, e=(l, ...,I)T.

We do not have the space in this paper for a detailed analysis of the order conditions of PRK
methods, but merely note that these are consistency conditions so that the mean and covariance
matrix of the PRK methods have the same formal Taylor-like expansion as the SSA method for
the O(t) condition.

The basic idea that we will introduce in Section 3 is that chemical reaction systems can be
viewed as consisting of three different regimes and can be solved by coupling together three
different simulation approaches applied to each of these regimes. Thus we intend to use the SSA
when there are only a very few molecules; the explicit PRK approach (as typified by the 7 -leap
method) will be used for components of the system with moderate numbers of molecules. Finally,
we will use a simple SDE method for solving the CLE (1) when there are very large numbers of
molecules. Since the CLE is just an example of the general class of 1t6 SDEs (2) we conclude this
section with a brief discussion on suitable classes of stochastic methods for solving stiff SDEs. We
note that stiffness within an SDE is characterised by the problem having widely varying Lyapunov
exponents (these are the stochastic counterparts of eigenvalues).

For solving a stiff SDE of the form (2) there are three approaches: explicit, semi-implicit and
fully-implicit methods. In the first case, explicit methods can be suitable for stiff problems only if
the stepsize is not too small or if the additional computation associated with implicit methods is
prohibitive. Perhaps the simplest method in the middle class is the semi-implicit Euler method
which takes the form

d
Ynr1l = Yn+ th(yn-H) + Z AI/V/(n)gj(yn)'
=1

This method works well if (2) is stiff only in the deterministic component but less well if there is
also stiffness in the stochastic components. Milstein et al. (1998) introduced the balanced Euler
method to overcome this limitation; it takes the form

d
Yuir =yu+ T+ G (hgo(yn) +> AW}”’g;(yn)).
=1

J

The matrix C, is chosen to be of the form
d
@+ > AW,
J=1

where the ¢;(y,) are matrix functions chosen to give appropriate damping and guarantee existence
of solutions. Note that the fully-implicit Euler method

d
Vet = Yu+ hgoGui)) + > AW (1)
i=1

cannot guarantee convergence at any particular time step since the Wiener increments can take on
positive or negative values with equal probability and in any case does not converge to the It
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solution if convergence does take place—see Burrage and Tian (2001), for example. Alcock and
Burrage (2003) have considered improvements over the Balanced Euler method in terms of better
order and stability properties while Tian and Burrage (2001) have constructed high order implicit
Taylor methods for stiff SDEs. Both the semi-implicit Euler method and the Balanced Euler
method have strong order 0.5 and weak order 1.

3. Multi-scaled approaches to chemical reaction systems

Recently, two new approaches by Rao and Arkin (2003) and Haseltine and Rawlings (2002)
have been considered in an attempt to speed up the performance of the SSA. Both of these ideas
are based on partitioning of the system. In the case of Rao and Arkin, they consider a time scale
separation in which a subset of the system is asymptotically at steady state. This is called the
quasi-steady-state assumption (QSSA) and eliminates the fast dynamics that is responsible for the
poor performance of the SSA. If the QSSA is applied in deterministic kinetics, the ODEs
describing the intermediate species are set to 0. In the stochastic setting the system is split into
primary (y) and ephemeral (z) subsystems.

Let P(y,z; t) be the probability density function of the entire system so that

P(y,z; 1) = P(zly; ) P(y; 0).

Then Rao and Arkin assume that z conditional on y is Markovian, so that for fixed y the
conditional probability distribution P(z|y;?) approximately satisfies a master equation. If, in
addition,

dP(z]y; Z)~0
e~
so that

P(zly; )~ P(z]y),

then a CME for describing the evolution of the probability density function can be obtained solely
in terms of the primary species y. The SSA can then be applied to this subsystem in a transparent
manner. As a particular case Rao and Arkin (2003) show how a simple enzymatic reaction
involving an enzyme, substrate and enzyme-substrate complex in which the substrate
concentration is much larger than the enzyme concentration leads, via QSSA arguments, to
applying the SSA with a propensity function of the form a(s) = as/(f + s), which is of course the
Michaelis—Menten approximation. Finally, Rao and Arkin (2003) consider, as a specific example,
the behaviour of the Pg promoter in conjunction with the Cro protein in A bacteriophage. The Pr
promoter plays an important regulatory component for determining the lysis or lysogenic
pathways in the lambda infection of E. coli; see, for example, Shea and Ackers (1985), Arkin et al.
(1998), Tian and Burrage (2004).

Using the ideas of Rao and Arkin (2003), Haseltine and Rawlings (2002) attempt to speed up
the performance of the SSA by partitioning a chemical reaction system into slow and fast reaction
subsets. The slow subsystem corresponds to extents with small propensity functions and few
numbers of reactions, while the latter corresponds to large propensity functions and large
numbers of reactions. This partitioning is achieved by exploiting the structure of the CME and
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deriving master equations that describe the evolution of the probability density function for both
the slow and fast subsystems. The slow system is treated by the SSA, while the fast system is
treated either deterministically or by applying the explicit Euler—Maruyama method to the CLE.
Thus at each time point ¢, the CLE is repeatedly solved until ¢, ; = ¢, + 7 is reached and then the
SSA is applied to the slow subsystem with a stepsize of 7.

Some remarks can be made about this approach.

® [n order to move from the continuous to the discrete stochastic regime a rounding process must
be adopted. This causes negligible errors as the values for the molecular species in the
continuous regime are large.

e In the Haseltine and Rawlings approach it is not clear what the specific details for partition-
ing into slow and fast reactions are but they recommend maintaining at least two orders
of magnitude difference between the partitioned reaction probabilities. However it is
important for the partitioning to be adaptive and to change throughout the interval of
integration.

e Haseltine and Rawlings use an explicit method, namely the Euler—Maruyama method, for
simulating the CLE. However, since the propensity functions in the CLE are large, the SDE is
stiff (in the sense of widely varying Lyapunov exponents) and thus some consideration could be
given to using semi-implicit or fully-implicit methods for this component. This could come at
some cost if the dimension of the fast subsystem is at least moderately large.

In spite of these remarks, the papers by Rao and Arkin (2003) and Haseltine and Rawlings
(2002) represent a significant attempt for developing simulation techniques that interface between
microscopic and macroscopic regimes.

We note here that when discussing slow, intermediate and fast sub-reactions we are in reality
classifying reactions into slow, intermediate and fast regimes. These regimes are characterised by
the presence of one or more slow, intermediate and fast reacting species. In some cases it is
possible to scale systems such that each term in the governing equations is composed of an
expression of order of magnitude unity, multiplied by a dimensionless parameter, and this can
lead to semi-autonomous simplification procedures. However, for the complex systems that we
will study, we will assume that these procedures are inappropriate. We emphasise that we are
trying to get a completely general, adaptive, partitioning approach for simulating chemical
reaction systems.

3.1. The implementation

As remarked previously, we intend to use the SSA, the t-leap method, and the Euler-Maruyama
method in the slow, intermediate and fast regimes, respectively. The main issue that we must first
address is how to classify these regimes. In order to attempt this classification we need to analyse
the t-leap method in more detail.

Recall that the t-leap method takes the form

M
X(t+71) =X+ Y vPla(X1),7). (5)

j=1
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Now if at some time point ¢, suppose X (7) consists of only 0’s or 1’s. Then given that for a second
order reaction of the form [A] + [B] —[C], the stoichiometric vector has entries 0, 1 or -1, it is clear
that if P(a(X(¢)),7) =2 then we can obtain negative entries in X (¢ + 7). This is clearly unacceptable
as the entries of X(¢) represent the numbers of molecules in the system.

Thus in the case of a very small number of molecules we have, for the t-leap method, the
constraint

aG(X()y<l, j=1,.. M.

Note that this constraint is very much like a stability constraint although it is not one.

This brief analysis shows that not only must we classify in terms of the size of the propensity
functions but also in terms of the number of molecules in the system. Thus at every time step we
will classify the system as slow, intermediate or fast (see Table 1). We then form three vectors
corresponding to the slow, intermediate and moderate regimes and place in those vectors the
corresponding reaction number. If there are no reactions in say the intermediate vector for a given
time step then that means there are no intermediate reactions for that step and the simulation
regime changes accordingly. Note that we do not make the somewhat arbitrary assumption of
Haseltine and Rawlings of maintaining at least two orders of magnitude between the different
regimes.

We now discuss our implementation. We will denote by ag(l)o)w(X (1)) and afﬁld(X (7)), the sum over
all the propensity functions of small and moderate sizes, respectively. We first note that in this
paper we have not presented a theoretical basis for a classification into the three regimes: fast,
intermediate and slow. We will do this in a later work. Instead, we use as our theoretical basis the
work of Haseltine and Rawlings for a classification into fast and slow and then note that we will
use two types of simulations in the latter regime namely SSA and t-leap.

For the slow regime we first determine a stepsize for the slow reaction as

1 1

s = w)iln (—) r~U(0,1).
aslow(X(t)) r

Then for given ¢ that allows us to control the relative changes in the propensity function and takes

on a value typically between 0.01 and 0.1 (see Burrage and Tian, 2003 for more discussion on

this), we determine the stepsize for the intermediate regime as

o fax o+ —ax o) _
a a9 (X (1))

mod

jelnt

If 7g <11 we use 1g as the stepsize for the t-leap method in the intermediate regime, while if 77 <7g
we integrate by the t-leap method until we reach time point ¢ 4+ 7s. Note that we only update the
intermediate reactions in this time interval.

Finally, we integrate the CLE by the explicit Euler—Maruyama method with a stepsize g <7s,
chosen appropriately to guarantee stability, until we reach the time point ¢ + 7s. We should note
in passing that when we apply the t-leap repeatedly updating the intermediate steps from [z, ¢ + 1s]
the number of molecules should not become negative in that step. By taking the mean of both
sides in (5) we must have

Xi(H) = 15a) ,(Xi(2)).
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Table 1

Regime classification

# Molecules Propensity function Classification
Large Large Fast
Moderate Large Intermediate
Large Moderate Intermediate
Moderate Moderate Intermediate
Large Small Slow

Small Large Slow
Moderate Small Slow

Small Moderate Slow

Small Small Slow

This gives a mechanism for the classification of the slow and intermediate regimes. In all cases the
classification and stepsize selection process is repeated from step to step.

4. Numerical simulations

The test problem that we will use for our multi-scaled simulation is one presented by Kierzek
(2002). In this paper, Kierzek presents a quite sophisticated implementation of the SSA in a
software package known as STOCKS. The implementation treats both the growing volume of a
cell and the simulation of cell division. Since we will do the same with our implementation a brief
discussion on how this is done is appropriate.

In a single generation it is assumed that the cell doubles its volume from 1 to 2. This is
achieved by letting the volume grow as V() =1+ ¢/T, where T is the cell generation time.
Thus at each simulation time step, the rates of all the second order reactions are divided
by the current volume. Secondly, when the system reaches the generation time, all of the reactants
that model the DNA elements are doubled (implemented by a separate set of reactions from that
being modelled). Then the numbers of all the molecules present in the system are divided by
two, the volume of the cell is reset and the behaviour of a new cell is simulated for the next
generation time.

The biological system that we will simulate is the expression and activity of LacZ and LacY
proteins in E. coli. A detailed description of the biological significance of the model is given in
Kierzek (2002) but we give the full list of reactions here in Table 2.

There are 22 reactions and 23 molecular species in this model. The initial state has PLac = 1,
RNAP = 35, Ribosome = 350 and all other elements 0. Results from a simulation of the system
on the interval [0,2000] are given in Figs. 1 and 2. In Fig. 1, we see that the steady-state numbers
of lactose, lacZ and RbsLacY are approximately 30,000, 300 and 2; while from Fig. 2 we see that
the steady-state values of the propensity functions for reactions 5, 17 and 20 are approximately
0.003, 0.1 and 1000, respectively. Clearly it makes a great deal of sense to classify this problem
into three regimes both in terms of the numbers of molecules and the propensity functions. The
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A full list of reactions and rates

231

Rate constant

Reaction
1 PLac + RNAP — PLacRNAP 0.17
2 PLacRNAP — PLac + RNAP 10
3 PLacRNAP — TrLacZl1 1
4 TrLacZ1 — RbsLacZ + PLac + TrLacZ2 1
5 TrLacZ2 — TrLacY1 0.015
6 TrLacY1— RbsLacY +TrLacY2 1
7 TrLacY2 — RNAP 0.36
8 Ribosome + RbsLacZ — RbsRibosomelLacZ 0.17
9 Ribosome + RbsLacY — RbsRibosomeLacY 0.17
10 RbsRibosomelLacZ — Ribosome+ RbsLacZ 0.45
11 RbsRibosomeLacY — Ribosome+ RbsLacY 0.45
12 RbsRibosomelLacZ — TrRbsLacZ + RbsLacZ 0.4
13 RbsRibosomeLacY — TrRbsLacY + RbsLacY 0.4
14 TrRbsLacZ — LacZ 0.015
15 TrRbsLacY — LacY 0.036
16 LacZ — dgrLacZ 6.42E-5
17 LacY — dgrLacY 6.42E-5
18 RbsLacZ — dgrRbsLacZ 0.3
19 RbsLacY — dgrRbsLacY 0.3
20 LacZ +lactose — LacZlactose 9.52E-5
21 LacZlactose — product+ LacZ 431
22 LacY — lactose+ LacY 14

45 T e e e e

! — - lactose
4 -—-lacz []
— RbsLacy]

35+t

log10 (number)

25t

15

0.5

0
0

200 400 600 800 1000 1200 1400 1600 1800 2000
time T

Fig. 1. Log of number of molecules vs. time.
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Table 3
Comparison between SSA and Multi-scale approach
SSA Multi-scale(1) Multi-scale(2)
Number of product molecules 1,596,036 1,623,072 1,723,546
Number of steps 4,833,348 3,294,700 3,497,500
Time taken 7h05m38s 5h00m29s 5h2Im10s

particular classification that we use for this problem is

X; <100 = small, ai(X)<5 = small,
X;€[101,1000] = moderate, «;(X)e(5,100] = moderate,
X; > 1000 = large a;(X) > 100 = large.

The reason for this choice is that there is a trade-off between having a larger ts but having the -
leap method giving negative numbers of molecules. In Table 3, we give some comparisons between
SSA and the above classification. In this table, Multi-scale(1) and Multi-scale(2) refer to two
different simulations of the multi-scale approach. The time taken was for MATLAB code
executed on a Sun workstation, and is merely indicative of relative time taken; it is planned to
develop this code in Fortran or C, and then to parallelise it to reduce the implementation time—
see, for example, Burrage et al. (2003).

The improvements over the SSA implementation are substantial rather than dramatic.
However, this work is just a first attempt to couple multi-scale simulations for a ‘‘real-life”
challenging biological application. There are many opportunities for further work in the
classification, the linking of the simulation techniques between the different regimes and reduction
in the number of Poisson simulations, which we will consider in future work.
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5. Concluding remarks

The dominating theme of the research described in this paper is the understanding of cellular
dynamics in terms of interactions among the molecular components of a living cell. Of course we
are a long way from this goal but new technologies such as the functional molecular
cinematography unit offer a way of tracking the motion of individual molecules within a living
cell. This offers a mechanism for the development and validation of more sophisticated models
based on stochastic chemical reaction systems.

In the meantime, Endy and Brent (2001) have observed that researchers investigating the cell
doubling of relatively simple organisms such as E. coli require a single simulation of 10'4-10'®
reactions. In addition, in order to collate meaningful statistics, hundreds, if not thousands, of
these simulations are needed. The main focus of this paper has been on the development of a
multi-scaled approach via the linking of appropriate simulation algorithms operating at the slow,
intermediate and fast reaction regimes. Irrespective of these algorithmic advances there is also a
need to couple these approaches to sophisticated implementations using, for example, parallel and
grid computing. A number of groups are working on this—see, for example, Kierzek (2002),
Burrage et al. (2003) and McCollum et al. (2002). If this is then coupled with sophisticated three-
dimensional visualisation techniques then we can really start to approach the holy grail of
genomics, namely the ability to predict the dynamic effects on an organism of gene expression.
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