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Abstract

The concept of excluded volume and the theory of effects of excluded volume on the equilibria and rates of macromolecular reactions in

fluid media containing high total concentrations of macromolecules (‘crowded’ media) are summarized. Reports of experimental studies of

crowding effects published during the last year are tabulated. Limitations of current excluded volume theory are discussed, and a

determination is made of conditions under which this theory may and may not be validly applied. Recently suggested novel approaches to

quantitative analysis of crowding phenomena, which may help to overcome some of the limitations of current theory, are summarized.
Published by Elsevier B.V.
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1. Introduction

Physiological fluid media contain macromolecules col-

lectively occupying between a lower limit of about 7% and

an upper limit of about 40% of total fluid volume [1,2].

Such fluids are termed ‘volume-occupied’ or ‘crowded’

rather than concentrated, since no single macrosolute spe-

cies may be concentrated.1 The influence of high fractional

volume occupancy on the rates and equilibria of macro-

molecular reactions taking place in crowded solutions has

been recognized since the 1960s, but the biochemical and

biophysical implications of these effects have only begun to

be appreciated by the wider community of biomedical

researchers within the last 10 years or so. During the last

3 years, several minireviews on the subject of macromo-

lecular crowding have appeared [3–7]. While the qualitative

and semiquantitative successes of crowding theory—and

they are substantial—have been well documented, there

remain important aspects of quantitation that in our opinion

remain inadequately understood and analyzed. We shall
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discuss some of these challenging issues and call attention

to some new approaches that may help to resolve conceptual

ambiguities and enhance quantitative analyses of crowding

phenomena.

This minireview is organized as follows. First, we provide

a basic introductory tutorial to the concept of excluded

volume, and its effect on chemical rates and equilibria in

highly volume-occupied solutions resembling biological

fluid media. Second, we present a tabulation of recently

published experimental studies not cited in previous reviews.

Third, we attempt to examine critically capabilities and,

importantly, the very real limitations of current excluded

volume theory. Finally, we review some new approaches to

the quantitative analysis of macromolecular crowding.
2. The effect of nonspecific solute–solute interaction on

the rates and equilibria of macromolecular reactions2

The influence of volume exclusion upon the thermody-

namics of chemical reactions in volume-occupied media
2 This brief summary of basic relationships is presented for the benefit

of readers not previously familiar with the subject, and to introduce

nomenclature and notation utilized subsequently. More complete treatments

may be found in the references cited below and in Ref. [2].
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becomes evident upon examination of a few simple but

fundamental relationships [8,9]. Let us represent a general-

ized reaction in solution by the following scheme:

r1R1 þ r2R2 þ . . . V p1P1 þ p2P2 þ . . . ð1Þ

where ri is the stoichiometric coefficient of reactant species

Ri, and pi is the stoichiometric coefficient of product species

Pi. The equilibrium concentrations of reactants and products

at temperature T and pressure P are related by:

w
p1
P1
w

p2
P2

. . .

wr1
R1
wr2
R2
. . .

uKðT ;P; fwgÞ ¼ KoðT ;PÞ CðT ;P; fwgÞ ð2Þ

where wi denotes the equilibrium weight/volume concen-

tration of solute species i, and {w} denotes the composition

of the solution (i.e., the equilibrium concentrations of all

solutes). K denotes a composition-dependent apparent equi-

librium constant, Ko the true equilibrium constant, and C the

‘‘nonideality factor’’, a composition-dependent measure of

solute–solute interactions, given by

CðT ;P; fwgÞ ¼
cr1R1

cr2R2
. . .

cp1P1
cp2P2

. . .
ð3Þ

where ci denotes the thermodynamic activity coefficient of

solute species i.3 For transition-state rate-limited reactions,

the effective forward and backward reaction rate constants

are given by (Appendix of Ref. [10]):

kf ¼ kof
cr1R1

cr2R2
. . .

cT
ð4Þ

kb ¼ kob
cT

cp1P1
cp2P2

. . .
ð5Þ

where kf
o and kb

o, respectively, denote the forward and

backward rate constants in the limit of high dilution of all

macrosolutes, and cT denotes the thermodynamic activity

coefficient of the transition-state complex. It has been

argued [9] that due to the short-range nature of attractive

intermolecular interactions in solution, the transition state of

a self- or hetero-association reaction must be compact,

suggesting that

cTccp1P1
cp2P2

. . . ð6Þ

from which it follows that for associations in solution,

crowding is expected to affect primarily the forward rate

constant: kfc kf
oC and kbc kb

o. However, this is not neces-

sarily the case for transition states in other types of reac-

tions, such as isomerization or surface adsorption [10].
3 The activity coefficient is a measure of solute– solute interaction in

solution. Its formal definition is given below.
ci is a measure of the equilibrium average free energy of

interaction in solution between a molecule of solute species

i and all other solute molecules present:

RT lnciðT ;P; fwgÞ ¼
BG

Bwi

� �
T ;P;fwg

� BG

Bwi

� �
T ;P;fwgZ0

u
BG

Bwi

� �
T ;P;fwg

*
ð7Þ

The asterisk attached to the rightmost term in Eq. (4)

serves to remind us that the interaction energy defined by

the activity coefficient is a differential interaction energy,

i.e., the difference between (1) the energy of interaction

between solute species i and the other solute molecules in

the crowded solution, and (2) the energy of interaction

between solute species i and the solvent molecules that

were replaced by solute in the crowded solution. It follows

from Eq. (7) that in the limit of high dilution of all solutes,

the activity coefficient of each solute approaches unity, and

subsequently the value of C approaches unity. Under these

circumstances, the apparent equilibrium constant K be-

comes equal to the true equilibrium constant Ko. In highly

volume occupied solutions, on the other hand, the activity

coefficient of each macrosolute—dilute as well as concen-

trated—may deviate from unity by as much as several

orders of magnitude, with potentially major impact on

reaction equilibria and rates in these solutions (see below).

Eq. (7) is exact and takes into account all (differential)

solute–solute interactions. In the present minireview, we

focus on one specific class of interactions, namely those

arising from the mutual impenetrability of solutes and the

consequent steric repulsion. We refer to these interactions as

excluded volume interactions for reasons that will become

clear in the following development. Depending upon exper-

imental conditions, other types of solute–solute interactions

may or may not contribute significantly to ci, but in crowded
solutions, excluded volume effects are unavoidable, ubiq-

uitous, and will almost always have significant energetic

consequences [2,5].

In order to illustrate the concept of excluded volume, and

its complement, available volume, we shall employ a macro-

scopic analogy. Consider a beaker filled to the brim with ball

bearings of 5-mm diameter. The randomly close-packed ball

bearings occupy about 65% of the volume of the beaker,

leaving about 35% in the interstices between the ball bearings

[11]. Even though the interstitial volume is ‘empty’, geo-

metric constraints prevent the addition of even a single

additional ball bearing to the beaker (Fig. 1A). The interstitial

volume is said to be excluded to ball bearings. Alternately, the

volume available to ball bearings (i.e., the total volumeminus

the excluded volume) has become zero. The interstitial

volume is, however, available to particles that are sufficiently

smaller, such as grains of sand. If we pour sand into the

beaker, it will ‘fill’ the interstices between the ball bearings,

but in reality occupy only about 65% of that volume (Fig.

1B). When the beaker is filled with sand in this fashion, the



Fig. 2. Logarithm of activity coefficient of a spherical particle of species T

(massMT) in a fluid of spherical particles of species C (massMC), plotted as

a function of /, the fractional occupancy of volume by C, and MT/MC.

Significance of plotted point described in text. Calculations for this figure

and Figs. 3 and 4 were performed using scaled particle theory of hard

sphere mixtures [12]. It is stipulated here and elsewhere, unless explicitly

stated otherwise, that all species have the same density, so that Mi~ri
3.

Fig. 1. Simplified example of the concept of a size-dependent available volume, as described in the text. Large black spheres depict ball-bearings, small brown

spheres depict grains of sand, and blue field indicates water. The red border demarcates a region of unit volume.
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volume remaining between grains of sand, corresponding to

about 10% of the total volume of the beaker, is excluded to

both ball bearings and grains of sand, but is available to yet

smaller particles, and may be filled with water (Fig. 1C).

Consider next a fluid containing a volume fraction of

hard particles significantly less than the close packing limit.

In this fluid, the volume available to a given species of hard

particle, i.e., the volume in which the center of an additional

molecule of that solute may be placed, may, depending

upon the abundance, sizes and shapes of all other particles

present, be substantially less than the total volume minus

fractional volume occupancy. As in the illustrative example

above, this is simply due to the mutual impenetrability of

the particles. For pure steric repulsion, the (entropic) work

of particle insertion increases as available volume

decreases, and the activity coefficient of species i may be

expressed simply as [12,13]

ci ¼
Vtotal

Vavailable;i
¼ 1

favailable;i
ð8Þ

For model fluids consisting of hard convex particles, a

number of approximate methods exist for calculating the

volume available to another hard convex particle (reviewed

in Ref. [14]).

The application of these concepts to solutions of bio-

logical macromolecules became practical when it was dis-

covered that under commonly encountered conditions,

experimentally measured activity coefficients of proteins in

crowded solutions could be estimated surprisingly accurately

using simple structural models, in which rigid globular

proteins were represented by hard particles having a size

and shape similar to that of the protein at low resolution

(such as spheres or spherocylinders), and large random coil

polymers were represented by a random matrix of long rigid

rods [9,15–17]. Under these conditions, it is possible to use

effective hard particle models to obtain realistic estimates of

the activity coefficient of proteins and hence C for a variety

of macromolecular reactions in crowded solutions of pro-

teins and polymers, leading to a series of predictions of how

crowding might affect the equilibria and rates of these

reactions in different media [9].

We may estimate the activity coefficient of a dilute

globular protein, called tracer T, in a solution containing a
second globular protein of uniform size, called crowder C,

occupying fraction / of total volume by modeling both

proteins as hard spherical particles. The result of a calcu-

lation carried out using the scaled particle theory of fluid

mixtures [12] are plotted in Fig. 2. Two qualitative aspects

of this result are notable. The first is the potentially

extremely large activity coefficients—exceeding unity by

as much as several orders of magnitude—that can be

attained by proteins in solution at physiological levels of

volume occupancy. For example, the dark circle indicates

the activity coefficient of a sphere in a solution containing

other spheres of equal size at a fractional volume occu-

pancy of 0.3. This result, indicating an activity coefficient

exceeding 100, corresponds closely to the experimentally

measured activity coefficient of hemoglobin in a 350 g/l

solution of hemoglobin, comparable to the contents of a

red blood cell [16]. The second notable qualitative prop-

erty of the result shown in Fig. 2 is the extremely

nonlinear aspect of the dependence of cT on both the



Fig. 3. Calculated effect of volume occupancy by inert species C on the equilibrium constant for the isomerization reaction RWP. (A) Effect of varying relative

sizes of R and P for vR = vC. (B) Effect of varying relative sizes of R and C for rP= 1.2rR.
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fractional volume occupancy and on the relative sizes of

tracer and crowder.

It follows from Eqs. (2), (4), and (5) that the dependence

of cT on the relative size and abundance of crowder shown

above is manifested in a corresponding dependence of C
and hence the equilibrium and rate constants of reactions of

tracer species. Two examples are provided here. The first is

a simple isomerization reaction resulting in a change in the

effective volume of a dilute macrosolute

RVP ð9Þ

The results of a calculation of C based upon the assumption

that all macrosolute species (R, P, and C) may be repre-

sented as hard spherical particles are plotted in Fig. 3. It may

be seen that any conformational change that increases the

effective volume of the dilute species (rP>rR), such as

protein unfolding, is progressively inhibited with increasing

extent of crowding.

The second example is a simple self-association reaction

involving formation of an n-mer from n monomers:

nRVP ð10Þ
Fig. 4. Calculated effect of volume occupancy by inert species C on the equilibr

volume of P is n times the volume of R. (A) Effect of varying n for vR = vC. (B)
The results of a calculation of C based upon the assump-

tions that all macrosolute species (R, P, and C) may be

represented as hard spherical particles, and that the volume

of the hard spherical particle representing P is equal to n

times the volume of R are plotted in Fig. 4. It may be seen

that self-association is progressively facilitated with increas-

ing extent of crowding, and that the magnitude of the

crowding effect on self-association increases with the

degree of self-association.

Before concluding this introduction to crowding theory,

it must be noted that in addition to the thermodynamic

consequences summarized above, substantial volume occu-

pancy can considerably reduce the diffusional mobility of

macromolecules—a hydrodynamic rather than thermody-

namic consequence [2,8]. In some cases, this extra-ther-

modynamic effect may have a comparable or larger

influence upon the extent or time course of a particular

reaction in a crowded medium than the thermodynamic

effect as reflected in the value of C. As the theoretical

treatment of hydrodynamics in volume-occupied fluids is

considerably more complex, and hence less developed than
ium constant for the self-association reaction nRWP. It is assumed that the

Effect of varying relative sizes of monomer and crowder for n= 2.



Table 1

Summary of effects of excluded volume on macromolecular reactions in

crowded solutions

Reaction Effect of crowding

Equilibrium Rate

Conformational

isomerization

Biases reaction toward

compact and against

expanded and/or

extended conformations

Either accelerates or

retards compaction

depending upon whether

transition state is less or

more compact than

initial conformation

Association Biases reaction(s)

toward maximally

associated state

Accelerates slower

reactions not limited by

rate of encounter; retards

fast reactions limited by

rate of diffusional

encounter
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the corresponding treatment of thermodynamics in such

fluids, the extra-thermodynamic consequences of crowd-

ing, which have been extensively discussed elsewhere (see

for example references cited in Refs. [2,18]), are necessa-

rily restricted to semi-empirical analyses. The overall

effects of crowding upon conformational isomerization

and association of macromolecules are summarized qual-

itatively in Table 1.
3. Recent experimental findings

Over the last 40 years, a substantial number of exper-

imental studies carried out in many laboratories (cited in
Table 2

Recent experimental studies of macromolecular reactions in crowded media

Observation Commen

Several proteins refolding to native state spontaneously in dilute

solution stringently require GroEL, Gro-ES and ATP in order to

refold to native state in crowded solution

Formation of amyloid fibers by apolipoprotein C-II accelerated by

added dextran

f 8-fold

upon dex

volume m

Formation of fibrils by alpha-synuclein is accelerated by added

proteins, polysaccharides and polyethylene glycol

f 6-fold

60 g/l BS

Formation of protofibrils and fibrils by alpha-synuclein is

accelerated by added polyethylene glycol, dextran and ficoll

Addition of high concentrations of various crowding agents slows

refolding of glucose-6-phosphate dehydrogenase and protein

disulfide isomerase but does not decrease final yield of native

protein. Addition of GroEL and ATP to crowded solutions

increases both the refolding rate and final yield of native protein

Differs fr

protein d

of GroEL

Enzymes that catalyze proteolysis in dilute solution can catalyze

peptide synthesis in sufficiently crowded solutions

Product m

Addition of dextran at high concentrations stabilizes lysozyme with

respect to thermal denaturation

Dextran d

enthalpy.

prediction

Addition of dextran stabilizes compact molten globule (MG) state

of cytochrome c at pH 2.0 relative to fully unfolded (U) state

Free ener

of 370 g/

consisten
Refs. [2,7,9]) have unequivocally established the potentially

dramatic influence of excluded volume on the rates and

equilibria of a wide variety of macromolecular reactions in

solutions comparable in volume occupancy to biological

media. During the past year, a number of interesting new

findings have been reported by several laboratories. These

are summarized in Table 2.

Of particular interest is the fact that several of the

previously unobserved effects reported in this table were

earlier predicted qualitatively on the basis of simple

excluded volume theory. Moreover, in some cases, the

magnitude of the observed effect agrees quite well with that

calculated from the simple theory. We emphasize this point,

since much of the remainder of the present review is

devoted to a critical examination of the limits of this simple

theory. This critical approach should not obscure the utility

of the simple theory when applied under appropriate con-

ditions, as will be discussed below.
4. Limits of the effective hard particle model for

calculating excluded volume interactions

The success of the effective hard particle model in

predicting and/or accounting semiquantitatively for a vari-

ety of experimentally observed excluded volume effects

implies that under the conditions under which these effects

were studied, approximations inherent in the simplified

model were reasonably realistic. The effective hard par-

ticle model is based upon the assumption that the effective

potential of interaction acting between macromolecules in

solution may be realistically modeled by a simple hard
t Reference

[34]

acceleration in 150 g/l dextran T10; dependence of rate

tran concentration accounted for quantitatively by excluded

odel

[35]

acceleration in 50 g/l lysozyme; f 5-fold acceleration in

A

[36]

[37]

om observations of Ref. [34] in that final yield of native

oes not decrease in crowded medium, and chaperone activity

does not require GroES

[38]

ust be significantly more compact than the reactants [39]

ecreases entropy of denaturation, does not significantly alter

Direction and magnitude of effect are consistent with

s of excluded volume theory

[40]

gy of U-MG transition decreases by ca. 5 RT upon addition

l dextran T35. Direction and magnitude of effect are

t with predictions of excluded volume theory

[40]



4 Solution properties that are functions of the thermodynamic activity

of solute.

Fig. 5. (A) Hard sphere potential. (B) Square well potential.
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particle (most simply, a hard sphere) potential, illustrated

in Fig. 5A. According to this model, there is no inter-

action between macromolecules so long as the distance

between their respective centers (r) exceeds the surface

contact distance rC, which is independent of relative

orientation of the particles for the case of hard spheres.

The mutually impenetrable molecules cannot approach

more closely than the contact distance. In other words,

the interaction potential at distances less than rC is

assumed to be infinitely positive. The validity of the hard

particle model rests on several approximations, each of

which must in itself be realistic if the overall model is to

be considered realistic. We shall discuss each of these

approximations in turn and indicate when a particular

approximation may, and, perhaps more importantly, may

not be expected to be realistic.

4.1. Solvent as continuum

The solvent (water + small molecule cosolvents) is trea-

ted as a continuum, which assumes that the effective

potential of interaction between macrosolute molecules in

solution is insensitive to the molecular (i.e., discontinuous)

nature of solvent. This approximation is valid so long as the

dimensions of the effective hard particle representing mac-

rosolute are much greater than the range of significant

variation in local density arising from the molecular nature
of solvent, which may be estimated from measurements of

the X-ray diffraction of water to have a range of ca. 3–4 Å

[19]. Conversely, as the size of a solute species decreases

and approaches that of a water molecule, the assumption

that the effective potential of interaction between molecules

of that solute and any other solute in water resembles a hard

particle potential must become a progressively poorer ap-

proximation [20].

4.2. Influence of ‘‘soft’’ (nonsteric) interactions

It has been argued that to the extent that additional soft

interactions such as electrostatic repulsion or attraction are

significant, they may be incorporated into the effective

hard particle model by appropriate adjustment of the radius

of the effective hard particle [21,22]. This approximation

was justified by the finding that an effective hard particle

model could quantitatively account for the experimentally

measured concentration dependence of the following colli-

gative properties4 of BSA solutions over a wide range of

concentrations: osmotic pressure (to 100 g/l) [22], light

scattering of BSA solutions (to 90 g/l) [21], and sedimen-

tation equilibrium (to 200 g/l) [9,23], at pH values where

the BSA molecule is known to be highly charged and

significant electrostatic solute–solute interaction is ex-

pected. Moreover, the effective hard volumes obtained

from analysis of different colligative properties, when

measured under comparable experimental conditions (pH,

ionic strength, temperature), are self-consistent (data not

shown). The success of the effective hard particle model in

accommodating these data—and the limitations of this

model—may be understood in the context of the following

analysis.

The activity coefficient of solute species i in a solution

containing multiple solute species may be written as an

expansion in powers of solute concentration

lnci ¼
X
j

Bijcj þ
X
j

X
k

Bijkcjck þ . . . ð11Þ

where Bij, Bijk, . . ., respectively denote two-body, three-

body, and higher-order interaction coefficients that are

functions of the effective potential of interaction (potential

of mean force) between two solute species, three solute

species, etc., in solution [24], and ci is the molar concen-

tration of species i. For the case of a single solute species,

Eq. (11) reduces to

lnc ¼ B2cþ B3c
2 þ . . . ð12Þ

There exist simple thermodynamic relationships between

solute activity coefficient and the colligative properties of

the solution that enable one to express the colligative

properties as expansions in powers of solute concentration



Fig. 6. Relative contribution of truncated expansions of osmotic pressure in

powers of concentration to the total osmotic pressure, as described in text.
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(see, for example, Refs. [14,25]). For example, the osmotic

pressure of a solution containing a single nondialyzable (i.e.,

macromolecular) solute species may be expanded in powers

of the concentration of that solute:

P
RT

¼ cþ C2c
2 þ C3c

3 þ . . . ð13Þ

where C2 = 1/2B2, C3 = 2/3B3, etc. The statistical–thermo-

dynamic theory of solutions [24] provides an analytical

expression for each interaction coefficient as a function of

the effective potential of interaction (potential of mean

force) acting between two, three, and greater molecules of

macrosolute in solution. For example, the two-body self-

interaction coefficient B2 may be expressed as the following

function of a spherically symmetrical potential of interaction

U(r), where r is the distance between the centers of two

interacting particles:

B2 ¼ 4pNA

Z l

0

1� exp � UðrÞ
kT

� �� �
r2dr ð14Þ

where NA denotes Avogadro’s number, k Boltzmann’s con-

stant and T the absolute temperature. The values of the first

seven Bi have been analytically or numerically evaluated for

the hard sphere (hs) potential shown in Fig. 5A [26].

Let us define the fractional contribution to the osmotic

pressure

fi ¼

Xi

j¼1

Cjc
j

Xl
j¼1

Cjc
j

ð15Þ

where C1u1. fi so defined is a measure of the contribu-

tion of the first i terms of the osmotic expansion to the

total osmotic pressure: f1 is the ideal contribution, f2 is the

ideal plus two-body solute–solute interaction contribution,

etc. The values of f1– f6, calculated for a hard sphere

potential and a specific hard particle volume of 0.8 cm3/g

[2], are plotted in Fig. 6. It may be seen that at least 95%

of the total osmotic pressure is accounted for by the first

two terms in the osmotic expansion at concentrations of

up to 100 g/l and by the first three terms at up to 200 g/l.

It follows that over the concentration range where colli-

gative properties (and by inference the thermodynamic

activity) are governed by at most two-body interac-

tions—up to about 100 g/l in the above example—the

effective hard particle model is automatically valid, as the
5 This conclusion is independent of the true form of U(r). It must,

however, be noted that if U(r) does not resemble a hard sphere potential, the

radius of the effective hard sphere may differ considerably from the average

radius of the actual macromolecule, and structure alone will not provide a

firm basis on which to predict thermodynamic activity.
radius of the effective hard sphere is simply a parametric

expression of C2.
5

The question remains whether the effective hard particle

model can be useful at higher solute concentrations, when

the contributions of three-body and higher interactions to

solute activity and colligative properties become significant.

This is not a trivial question, since while the evaluation of

B2 for almost any model function U(r) is simple, the

corresponding expressions for B3, B4 and higher interaction

coefficients (see, for example, Chapter 3 of Ref. [27])

become progressively more complex, and evaluation of

the multiple integrals appearing in them becomes prohib-

itively difficult for all but the simplest forms of U({r}),

where {r} denotes the relative positions of all interacting

molecules.

The simplest potential containing a soft interaction, the

square-well (sw) potential, is shown schematically in Fig.

5B. The strength of a ‘‘soft’’ interaction is parameterized by

the well depth or height parameter e,6 and the range of the

soft interactions parameterized by the width of the well, rC
( g� 1). Using expressions derived by Kihara [28] for the

square-well potential, the unitless ratio QswuC3/C2
2 was

calculated for different values of g and e, and compared to

Qhs, the value obtained for e = 0, i.e., a hard sphere potential.

A partial contour map of the results is displayed in Fig. 7.

The ratio Qsw/Qhs is greater than unity for all e < 0, i.e., to

the left of the vertical line indicating e = 0, and less than

unity for all e>0, i.e., to the right of the vertical line. The

cross-hatched region indicates that region of [ g, e] space for

which the values of Qsw and Qhs differ by less than 10%,

i.e., the region in which an effective hard sphere model can

closely emulate the square-well model.

Although the square-well model is a highly simplified

representation of a realistic interaction potential between
6 e is negative for attractive and positive for repulsive soft interactions.



Fig. 7. Partial contour map of the function Qsw/Qhs. Crosshatched region

covers all pairs of values of g and e for which the absolute value of Qsw/Qhs

is less than 1.1. Dashed line indicates pairs of [ g, e] for which C2 calculated

for the square-well potential equals 0, i.e., for which the function Qsw/Qhs

diverges.

7 This problem does not occur when only one of the species is present

at high concentration, since self-interaction of the dilute species is

negligible and there exist only two relevant values of rC, which may

automatically be converted to self-consistent equivalent hard sphere radii.
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macromolecules in solution, it is nonetheless evident that

the effective hard particle model can realistically emulate

the behavior of particles with soft as well as hard inter-

actions at higher concentrations (at least to ca. 200 g/l), so

long as the range of the soft interactions is much smaller

than the size of the hard repulsive core ( g < 1.1 in the case

of weak attractive interactions, g < 1.3 in the case of weak

repulsive interactions). The converse of this finding is that

one should not expect an effective hard particle model to

account for colligative properties or to provide an accurate

estimate of solute activity at high solute concentration when

soft interactions between the solutes are significant over

distances comparable to molecular dimensions.

4.3. Possible non-additivity of soft interactions

The effective hard particle model assumes that each

solute species may be represented for the purpose of activity

calculation by an equivalent rigid particle with dimensions

that are fixed under a given set of experimental conditions.

Under certain circumstances, this assumption may not be

justifiable. As an example, consider a solution containing

two globular proteins, one of which, denoted by 0, is

essentially electroneutral at the pH of the solution, and

one of which, denoted by +, is significantly positively

charged. In the most general case, namely, arbitrarily large

concentrations of each species, then the free energy of the

system will contain contributions from three binary solute–

solute interactions, 00, 0+, and ++. If an effective hard

particle model is assumed, then the contact distance for a

particular pair interaction is given by the sum of effective

radii of each species:

rCð00Þ ¼ r0 þ r0 ð16aÞ
rCð0þÞ ¼ r0 þ rþ ð16bÞ
rCðþþÞ ¼ rþ þ rþ ð16cÞ
The first two interactions will be determined essentially

entirely by hard steric repulsion between the macrosolutes,

independent of the charge on +. But if electrostatic repulsion

is significant, then rC (++) may be significantly greater than

2r+, in which case Eqs. (16a)–(16c) cannot be simultane-

ously satisfied by any fixed values of r0 and r+ [9].7 It

follows that an effective hard particle model may not

provide a realistic description of solute–solute interactions

in a solution containing high concentrations of multiple

macrosolute species having significantly different net

charges.

4.4. When are structural details important?

The representation of a globular or fibrous macromolec-

ular solute by an equivalent hard particle of fixed size and

shape (i.e., independent of the nature of other solutes with

which it may be interacting) embodies an implicit assump-

tion that it is possible to realistically estimate the volume

excluded by one macromolecule to another given only low-

resolution structural information (i.e., gross size and shape).

However, the degree of resolution required to provide a

useful estimate of excluded volume depends upon the

relative sizes and shapes of interacting particles. This is

illustrated in the following example.

We wish to estimate the activity coefficient of dilute

DNA (D) in a solution containing a globular protein P as a

function of protein concentration. In such a solution, Eq.

(11) reduces at low protein concentration to

lncD ¼ BDPcP þ . . . ð17Þ

For the purpose of this example, we shall assume that both

D and P may be represented by rigid particles interacting

exclusively via volume exclusion. Under such circumstan-

ces, it can be shown very generally [28] that

BDP / VDP ð18Þ

where VDP denotes the covolume of the particles represent-

ing D and P, i.e., the volume which one particle excludes to

the center of mass of the second particle.

We shall assume that P may be represented by a hard

sphere of radius rP, and examine two models for DNA. The

simpler of the two models (zeroth-order model) is a rigid

cylinder of radius rD, and the slightly less simple model

(first-order model) is a rigid cylinder containing wedge-

shaped grooves of angular width 2h (Fig. 8A), which

crudely represent the major and minor grooves of the double



Fig. 9. Ratio of co-area calculated using first-order model for DNA to that

using zeroth-order model for DNA, plotted as a function of groove half-

width h, for various values of rP/rD indicated in the figure.

D. Hall, A.P. Minton / Biochimica et Biophysica Acta 1649 (2003) 127–139 135
helical molecule. The covolume per unit length of DNA,

and hence BDP, is proportional to the co-area of a circle of

radius rP and the cross-section of the DNA normal to the

cylindrical axis. The co-area is just the area enclosed by the

center of P when it is rolled completely around the surface

of the cross-section of D. Co-areas calculated for the two

models of D are drawn schematically in Fig. 8B and BVfor
a protein that is small relative to the outer cylindrical

dimension of DNA, and in Fig. 8C and CVfor a larger

protein.

Letting the values of BDP calculated using the simpler

and less simple models of DNA be denoted, respectively, by

BDP
(0)

and BDP
(1)
, and letting f= rP/rD, the ratio BDP

(1)
/BDP

(0)
is

plotted as a function of the groove half-width h in Fig. 9 for

various values of f. For a fixed value of f, the value of BDP
(1)
/

BDP
(0)

decreases with increasing groove width, and this dec-

rease may be taken as a measure of error in the calculation

of BDP due to the neglect of additional complexity in the

shape of DNA (i.e., the presence of grooves). However, as

the size of the protein increases relative to that of DNA, the

fractional error incurred by ignoring a groove of fixed width

decreases. For example, if rp = rD (f = 1), essentially no error
Fig. 8. Schematic depiction of models for hard particle interaction between

a spherical cosolute and a zeroth and first-order model of DNA. (A) Cross-

sections of cosolute, depicted as a gray circle of radius rP, and the first-order

model of DNA depicted as a blue circle of radius rD with two symmetrical

grooves of width 2h. (B–CV) Sum of blue + yellow areas represent co-areas

of small cosolutes (B, BV) or larger cosolutes (C, CV) and zero order (B, C)

or first-order (BV, CV) models of DNA.
is incurred by neglecting a groove as wide as 2h = 45j. In
general, a realistic calculation of volume excluded by

particle 1 to particle 2 requires specification of features of

the surface of particle 1 that have a largest dimension

comparable to or larger than the size of particle 2.
5. Amplification of crowding effects by undetected

(‘‘hidden’’) cosolutes

When estimating the quantitative effect of an added inert

macrosolute upon the activity coefficient of a second solute

species, it is generally (if tacitly) assumed that other

volume-excluding species are present at negligible concen-

trations. However, if one is studying the effect of crowding

by a particular macrosolute in a biological fluid, the possi-

bility exists that other solute species exercising their own

significant crowding effects may be present without the

investigators’ knowledge. The following example calcula-

tions will demonstrate that the apparent effect of crowding

arising from the addition of a single macrosolute species

may be significantly altered by the presence of an additional

crowding species.

For purposes of demonstration, we shall represent each

solute species by an equivalent hard spheres with radius

ri ¼
3Miv

4pNa

� �1=3

ð19Þ

where Mi is the molar mass of solute species i, v is the

specific volume of the equivalent particle, assumed to be 0.8

cm3/g for all species, and NA Avogadro’s number. The

activity coefficient of each solute species in a mixture, the

composition of which is specified by the w/v concentration

of each solute species, is calculated using the scaled particle

theory for fluid mixtures of hard spheres [12].



8 Quantitative expressions describing the redistribution of species 2 are

presented in Appendix A.

Fig. 10. Effect of adding species 1 (M= 70 K) upon the activity coefficient of dilute species 2 (M= 70 K) in the presence of various concentrations of species 3

(M = 10 K), calculated assuming a specific hard particle volume of 0.8 cm3/g for all species. (A) Concentration of species 3 is held constant at (a) 0 g/l, (b) 50 g/

l and (c) 100 g/l). (B) Species 3 is in dialysis equilibrium with species 3 in an exterior reservoir containing species 3 at fixed concentrations of (a) 0 g/l, (b) 50 g/

l and (c) 100 g/l.
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We wish to calculate the effect of adding an inert solute

species 1 upon the activity coefficient of solute species 2 in

the presence of a third ‘‘hidden’’ solute species 3 at various

fixed concentrations. We arbitrarily set M1 =M2 = 70000,

and M3 = 10000. The results of this calculation are shown in

Fig. 10A. The presence of a fixed concentration of hidden

cosolute 3 very greatly magnifies the apparent effect of the

specified cosolute 1 upon the activity coefficient of test

species 2. The magnifying effect may be rationalized by

recalling that the increase in the activity coefficient of

species 2 is due to the reduction in volume available to

species 2, and that available volume decreases sharply with

increasing total volume occupancy by all solutes. In the

presence of added species 3, the volume available to species

2 is already reduced, even before addition of species 1. The

addition of a fixed quantity of 1 in the presence of 3 thus

results in a larger fractional decrease in volume available to

2 than addition of the same quantity of 1 in the absence of 3.

Since excluded volume effects are likely to modulate

biochemical equilibria and kinetics within cells [29], another

possibility should be explored. The cell membrane is per-

meable with respect to certain solutes and impermeable with

respect to others. Let us therefore consider the case in which

a large impermeant cosolute (species 1) is introduced into a

cell that contains a smaller permeant cosolute (species 3)

that is in equilibrium with solute 3 at a fixed concentration

in the external medium. As the concentration of 1 increases,

the intracellular concentration of 3 would be expected to

decrease correspondingly due to repulsive (excluded vol-

ume) interactions between 1 and 3. The combined effect of

increasing the intracellular concentration of species 1 and

the concomitant reduction of the intracellular concentration

of species 3 upon the activity coefficient of species 2 is

plotted in Fig. 10B. It is evident that the amplification in

crowding effect arising from the presence of the hidden
cosolute 3, highly evident in Fig. 10A, is greatly, although

not entirely, suppressed when species 3 is allowed to

redistribute in accordance with dialysis equilibrium.8 Thus,

a naive estimate of crowding effects that neglects the

possible presence of additional undetected crowding coso-

lutes (for example, curves a in Fig. 10A and B) may

considerably underestimate the consequences of crowding

within the cell.
6. Buffering of crowding effects by undetected

(‘‘hidden’’) associations

In the preceding section, it was pointed out that the

presence of significant concentrations of an uncharacterized

(‘‘hidden’’) macrosolute (species 3) in a biological fluid can,

by decreasing total available volume, effectively amplify the

effect of a known macrosolute (species 1) on the activity

coefficients of other macrosolutes. One can ask a comple-

mentary question: what if the presence of macrosolute

species 3 is known, rather than hidden, but its state of

association is indeterminate and variable? Since volume

occupancy favors association processes, as one adds increas-

ing amounts of known macrosolute species 1 to the fluid, one

would expect the degree of association of species 3 to

increase. In doing so, the total volume excluded by species

3 to other macrosolutes decreases, suggesting that the ability

of a particular macrosolute species to undergo association

and/or dissociation should decrease the contribution of that

species to crowding effects. Hall [30] has recently analyzed

in some detail a biologically relevant example of this notion.

Actin and tubulin, which are major components of the
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cytoskeleton or cytomatrix, comprise a significant fraction of

total intracellular protein in eukaryotic cells, and at any given

time these proteins exist in both their dissociated (G-actin,

free tubulin) and condensed (F-actin, microtubule) forms.

Hall carried out simulations of the condensation equilibrium

in highly nonideal solution, and demonstrated that conden-

sation significantly reduces the effect of the condensing

protein (at constant total concentration) on the activity

coefficient of a trace protein. The results of his simulations

apply equally to the case of an intracellular protein that is

able to reversibly adsorb onto the surface of a structural

element (a cytoskeletal fiber or membrane surface). Thus,

intracellular condensation or surface adsorption provides, in

principle, a mechanism for buffering changes in the thermo-

dynamic activity of intracellular macrosolutes resulting from

changes in cellular volume.
7. New quantitative approaches to the analysis of

crowding phenomena

Although the effective hard particle model for macro-

molecular crowding has proven to be useful in a variety of

qualitative and semiquantitative applications, its limitations

are becoming increasingly evident as our attention turns

from crowding in model systems to crowding in biological

media. Whereas model systems are designed to facilitate the

study of crowding by a single inert macrosolute and to

minimize interactions other than excluded volume, biolog-

ical media typically contain significant concentrations of

more than one macrosolute species under conditions in

which intermolecular interactions over and above simple

hard core repulsion play an important role in determining

the overall free energy of the system. Hence, nonadditivity

of interaction (Section 4.3) becomes a major concern.

Moreover, the relative concentrations of different macro-

solutes in complex biological media such as cytoplasm may

vary significantly with both time and position, and analyses

based upon a static time- and space-averaged composition

may not be realistic. Two novel attempts to deal with these

complexities have appeared very recently.

Kinjo and Takada [31,32] have employed the density

functional theory of fluids to explore excluded volume

effects in inhomogeneous solutions. The authors postulate

a system containing a dilute protein which may interconvert

between native (N) and denatured (D) states, an inert

crowder C and solvent S. Assuming that the sum of

densities of all species is constant and uniform, the density

of the ith species is specified as a function of position,

/(i)(r), and the free energy of the system specified as a

functional of all densities, F({/(r)}), which takes into

account model distance-dependent two-body repulsive and

attractive interactions between each pair of species. The

chemical potential of each species is then specified as the

derivative of total free energy with respect to the density of

each species at each point, l(i)(r) = dF/d/(i)(r). The equili-
brium state of the system is obtained by numerically solving

the resultant partial differential equations in an iterative

fashion until each l(i) becomes spatially uniform and

l(N) = l(D). The approach is extended to treat dynamics by

the introduction of expressions for the time dependence of

densities at a fixed point which contain models for spatially

dependent diffusion coefficients and rate constants for

conversion of native to denatured and from denatured to

native species. The approximations employed by these

investigators are crude, and the resolution of their numerical

solutions is low, but the results obtained suggest that this

approach can provide some fresh qualitative insight into

crowding-induced phase separation and the dynamics of

crowding-induced aggregation.

An alternate approach that is conceptually more straight-

forward, but computationally much more intensive, has

been introduced by Elcock [33], who employed Brownian

dynamics to calculate the free energy of transfer of a rigid

globular rhodanese molecule from the hollow interior of a

GroEL chaperone protein into bulk solvent, as a function of

the volume fraction of solvent that is occupied by an inert

macromolecular crowding agent modeled as a rigid sphere

(more precisely, a rigid spherical shell of small ‘‘atomic’’

beads). This calculation is equivalent to calculating the work

of introducing a cavity the size of the rhodanese molecule

into a fluid of crowder molecules. Such a calculation may be

performed analytically when all molecular species are

treated as hard particles, as described above. However, as

Elcock correctly emphasizes, the Brownian dynamics

approach may be readily extended to treat systems interact-

ing via arbitrary model potentials under conditions where an

effective hard particle model would not be realistic due to

the presence of significant non-additivity and/or long-range

intersolute interaction.
8. Summary/conclusions

While recent experimental findings generally provide

support for the utility of the effective hard particle model

in predicting and rationalizing effects of excluded volume

under some conditions, the limitations of this model must be

appreciated in order to avoid inappropriate application of the

model under other conditions, when the underlying assump-

tions cannot be expected to be realistic. Such conditions

include the following:

1. The major crowding species is much smaller than the

probe species under study.

2. The range of soft interactions is comparable to the size of

the smallest of the crowding species.

3. Multiple crowding species with possibly non-additive

soft interactions are present.

4. When all solute species excluding significant amounts of

volume to other species cannot be explicitly taken into

account.



D. Hall, A.P. Minton / Biochimica et Biophysica Acta 1649 (2003) 127–139138
Some of the limitations of current excluded volume

theory may be overcome by the application of new

techniques, which, when employed with caution, may

avoid oversimplification. Brownian dynamics (and other

techniques of simulation) may provide new insight into

reaction kinetics in crowded media. These benefits,

however, are obtained only after a large computational

investment and a concomitant loss of conceptual trans-

parency.

Perhaps the most valuable aspect of the current review is

the highlighting of recent experimental and theoretical

advances in the area of non-ideal macromolecular solution

chemistry. These works represent the leading edge of a field

of research that is at long last beginning to have a significant

impact on mainstream thinking in biochemistry, biophysics

and cell biology [5].
Fig. A1. Concentration of species 3 (M = 10 K) in an ‘inner’ compartment

containing concentration w1 of species 1 (M= 70 K), when species 3 is in

dialysis equilibrium with species 3 in a second ‘outer’ compartment

containing species 3 at the indicated concentrations. Calculation performed

assuming a specific hard particle volume of 0.8 cm3/g for all species.
Acknowledgements

The authors thank Steven Zimmerman, NIH, for an

extremely helpful critical reading of the first draft of this

review. We also thank Adrian Elcock, University of Iowa,

for access to a preprint in advance of publication.
Appendix A. Dialysis equilibrium in a solution when

membrane is permeable to only one of two solutes

Let a solution containing solute species 1 at concentra-

tion c1
in and solute species 3 at concentration c3

in be confined

within a membrane that is permeable only to species 3. Let

the external medium contain solute species 3 at concen-

tration c3
out. At dialysis equilibrium, the chemical potential

of solute species 3 on both sides of the membrane must be

equal:

lin
3 ¼ lout

3 ðA1Þ

where

lin
3 ¼ l0

3ðT ;PÞ þ v3P þ RT lncin3 þ RT lncin3 ðA2Þ

lout
3 ¼ l0

3ðT ;PÞ þ RT lncout3 þ RT lncout3 ðA3Þ

l3
o, v3 and c3, respectively, denote the standard state chem-

ical potential of 3, the partial molar volume, and the activity

coefficient of species 3, and P denotes the osmotic pressure

of the inner solution, which is a function only of the

concentration of impermeant solute 1. Eqs. (A1)–(A3)

may be arranged to yield

cin3 ¼ cout3 exp½lncout3 ðcout3 Þ � lncin3 ðcin1 ; cin3 Þ � v3Pðcin1 Þ
 ðA4Þ

Given relations for calculating the activity coefficients and

the osmotic pressure as a function of the indicated concen-
trations, Eq. (A3) may be iteratively solved for the value of

c3
in as a function of c1

in and c3
out. The results of such a

calculation for two different values of c3
out are presented in

Fig. A1.
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