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1. Introduction 

Reaction kinetics is the branch of physical chemistry which deals with the temporal evolution 

of chemical reactions. It provides explanation as to why some reactions do not take place, although 

their products would be much more stable thermodynamically than the reactants are; it accounts for 

the fact that some reactions go very fast while some other rather slowly. Furthermore, it also 

provides several useful tools to calculate the actual rate of reactions within a wide variety of 

circumstances, including e. g. the dependence of the rate on temperature, pressure, the solvent 

applied, etc. 

The most important goal of kinetic research is the identification and characterisation of 

elementary molecular events which make possible the transformation of reactants into products. At 

the time of the beginning of reaction kinetic studies – in the second half of the 18
th

 century when 

mechanical models dominated natural sciences – the scheme of these simple molecular events that 

constitute the overall reaction has been called as the mechanism of the reaction, which term 

survived and is still widely used. This means that the elementary steps of the reaction – the most 

simple events when typically two molecules directly encounter – are identified, and the complex 

reaction mechanism is constructed from these elementary steps. Most real-life chemical reactions 

comprise quite a number of such elementary steps; the number of them e. g. in gas reactions can be 

as much as a few hundreds. The overall rate of these reactions can successfully be calculated over a 

wide range of circumstances if we can calculate the rate of all the constituent elementary reactions 

within the given conditions, and also know the way of their connection within the reaction 

mechanism. This is the reason why the theory of elementary reactions has a paramount importance 

in chemical kinetics. 

However, to explore the precise mechanism of composite reactions is not an easy task. To be 

able to construct a reliable mechanism, we have to identify all the components which take part in 

the process of the reaction, even if they are short-lived and have rather low concentration. We also 

have to keep track of the temporal evolution of possibly all these components, although this is not 

always possible. In many reactions, there are so called intermediates (substances formed from the 

reactants and readily removed in consecutive reactions leading to the products) that are rather 

short-lived and present only in very low concentrations, thus they easily remain unnoticed for the 

experimentalist. After having traced the temporal evolution of as many components of the reacting 

mixture as possible, the task of the kineticist is to construct a suitable mechanism that can explain 

all the concentration changes as a function of time. Consequently, theories of composite reactions 

also constitute an important topic of reaction kinetics. 
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To successfully model reactions the way explained above, we need an unambiguous definition 

of the rate of change of the amount of components taking part in the reaction. There exists an 

IUPAC recommendation for the definition of the rate of reaction. For the sake of this definition, we 

shall write stoichiometric equations in a special form, so that the equation is set equal to zero. The 

advantage of this form is that reactants and products (species on the left-hand side and on the right-

hand side in the more common equation) can be treated the same way, thus simplifying the 

mathematical treatment. The general stoichiometric equation of this form can be written as:  

 0
1

=∑
=

R

i

ii Av  (1.1) 

The symbol Ai in this equation denotes the stoichiometric formula of the i-th species, and νi (lower 

case Greek “nu”) is the stoichiometric number of this species. The index i runs over all the reacting 

species whose number is R. (Components that do not react – e. g. an inert solvent – should have a 

zero stoichiometric number, thus it is superfluous to include them in the sum.) As an example, let us 

write one of the possible equations of the formation of water: 

 – 1 H2 – ½ O2 + 1 H2O = 0 (1.2) 

In this equation, A1 = H2 , A2 = O2 , A3 = H2O , ν1 = – 1, ν2 = – ½ and ν3 = 1. However, we are too 

much used to write stoichiometric equations in the usual left side – right side form. Thus we usually 

write the equation itself in the traditional form 

 H2 + ½ O2 = H2O , (1.3) 

but we consider the stoichiometric number νi of the reactants (left side) to be negative, while those 

of the products (right side) to be positive. In the rest of this text, we always interpret stoichiometric 

equations this way. 

The rate of a particular reaction should be defined naturally in such a way that it should be 

independent from the choice of the component taking part in the reaction whose amount would be 

used for the temporal evolution. To formulate such definition, let us introduce the extent of reaction 

ξ also used in thermodynamics, but for use in the definition of the rate of reaction, it is sufficient to 

specify its change as 

 �� = 	���	��  . (1.4) 

The definition of the rate of the reaction which is written in the above explained general form (1.1) 

can then be written as: 

 	 = 	�
	�� = 	�		�� 	���	��  (1.5) 
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According to this, the SI unit of the rate of reaction is mol (stoichiometric equation) / s. In the 

chemical praxis, concentrations are much more convenient to measure than amounts of substances. 

Taking this into account, let us calculate from the above definition the rate of change of molar 

concentration of a species. Using the definition of the molar concentration as ni /V, we get 

 
	�		�� 	�(���)	�� = 	�		�� �� 	���	�� + �� 	��	�� � (1.6) 

This equation reveals that the rate of change of the molar concentration ��� ��⁄  also depends 

on the rate of change of volume. If the volume does not change during the reaction, the rate of 

reaction can be obtained by multiplying ��� ��⁄  by the volume of the reacting system, and dividing 

it by the stoichiometric number. Accordingly, we can state that in case of reactions at constant 

volume, the change of molar concentration is identical to the stoichiometric number times the rate 

of reaction divided by the volume: 

 
	���	�� = 	�		� 	���	�� = 	��		� 	�
	��  (1.7) 

Within chemical kinetic context, the quantity ��� ��⁄  is usually called simply as the rate of 

reaction. However, we should be aware that this quantity is proportional only to the rate of reaction 

in case of constant volume reactions, when the proportionality constant is the volume V divided by 

the stoichiometric number νi . In condensed phase reactions (e. g. in solutions) this is typically true 

to a good approximation, thus the proportionality can be assumed. Further on in this text, we also 

consider ��� ��⁄  as the rate of the reaction. However, in gas phase reactions, if there is a change in 

number of moles during the reaction, this proportionality does not hold and the change of volume 

should also be taken into account. It is worth mentioning also that the latest recommendations of 

IUPAC suggest to use the term “rate of conversion” for �� ��⁄  and the „rate of reaction” for 
	�		�� 	���	�� . 

However, naming of the terms does not change their relation as explained above. 

As we have seen, the definition of the reaction rate (in both versions) refers to a particular 

stoichiometric equation as it contains the corresponding stoichiometric numbers. It is worth 

mentioning that even this definition is only valid if during the (composite) reaction, there won’t be 

any accumulation of an intermediate, and no other “by-products” are formed beside those included 

in the stoichiometric equation. (This is never the case for elementary reactions where this definition 

can always be used.) Thus, in case of composite reactions it is more convenient to refer to the 

change of the amount (or concentration) of a component, or equivalently to the rate of consumption 

for reactants and the rate of formation for products. 
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2. Formal kinetic description of elementary reactions 

Theories of elementary reactions suggest that the traditional form of kinetic equations 

describing the rate of reactions – dating back as early as the middle of the 19
th

 century – is always 

valid for elementary reactions, i. e. for the simplest molecular events comprising only a few 

molecules and proceeding by the formation of only one transition state between the reactants and 

the products. Thus, if the elementary reaction is the decomposition of an (non-thermally) activated 

species, then the rate equation can be written as � = �	��, where R is the reaction rate, NA the 

number density (concentration) of the reacting species A. Similarly, for the reaction of two 

molecules A and B we can write the rate equation as � = �	����. The only other – much less 

frequent – possibility is the reaction of three molecules (A, B and C) after their encounter, when the 

rate equation has the form = �	������ . We can generalise this result by writing one single 

equation. Replacing the number density by the more common molar concentration and writing the 

reaction rate also in terms of this concentration, the rate equation has the form 

 − �	��	 ���	�� = �∏ ����!�  , (2.1) 

where "� is the stoichiometric number of the i-th component in the stoichiometric equation, and ci is 

its actual molar concentration. The rate coefficient k in this equation is somewhat different from the 

one in the rate equations containing number densities N (usually in molecules/cm
3
 unit). Let us 

ignore here to use another notation for the rate coefficient when the concentration has the unit 

mol/dm
3
, and interpret it further on as referring to the molar concentration. (The relation between 

the two contains the Avogadro constant and 1000 to convert cm3 to dm3.) The negative sign of the 

time derivative reflects the fact that reactants disappear in the course of the reaction. (If we consider 

the stoichiometric number as being negative for the reactants, this negative sign can be dropped.) 

The quantity denoted by n is of course the number of molecules participating in the reaction. 

Rate equations having the form of Eq. (2.1) are called mass action kinetic equations. If we 

consider the stoichiometry of the reaction, we can readily realise that the concentration of the n 

different reactants do not change independently – which will help a lot to solve the kinetic equation. 

This form of the kinetic equation is typically classified according to the number of molecules 
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participating in the molecular event of the reaction. Let us write the three stoichiometric and rate 

equations in the form of Eq. (2.1) for the actual cases of one, two and three molecules: 

 Reaction:                 A	 → 	products (2.2) 

 Rate equation: − 	��		�� = �� (2.3) 

 Reaction:         A	 + 	B	 → 	products (2.4) 

 Rate equation:                     − ��.	�� = − ��/	�� = ����� (2.5) 

 Reaction:  A	 + 	B	 + C	 → 	products (2.6) 

 Rate equation:         − ��. 	�� = − ��/ 	�� = − ��1 	�� = ������� (2.7) 

Observing these equations we can see the coupling between concentration changes due to the 

stoichiometry, and that derivatives at the left side of the rate equations are expressed at the right 

side by a product, where the variables to be multiplied are not independent. Equations having this 

form are called first order homogeneous ordinary differential equations of degree n. It is ordinary, 

as it contains the derivative of a function �(�) of one single variable only. It is first order, as the 

only derivative is a first derivative. It is homogeneous of degree n, as there is a single function in it 

(apart from the derivative), which is the product of n variables; thus a polynomial of n-th degree. 

However, in chemistry, we call the reaction characterised by these equations as n-th order reaction. 

(This name dates back to ancient times when the degree of polynomials in mathematics was also 

called order. This term is no more used for the degree of polynomials.) According to this naming 

tradition, the three reactions listed above are first order, second order and third order reactions, 

respectively. 

The examples discussed above were related to molecular events happening via formation of 

one transition state only from the reactants and its consecutive decomposition into products. Such 

events are called elementary reactions. Their rate equation always follows the mass action kinetic 

law (2.1), and the number of molecules taking part in the reaction is called their molecularity – 

which, in the case of the elementary reactions – is identical to their order. From the point of view of 

molecularity, the first reaction is a unimolecular, the second one a bimolecular, and the third one a 

termolecular reaction. (The latter is sometimes also called a trimolecular reaction, but we shall not 

use this term in this text.) It is worth to emphasise that the order and molecularity of the reaction are 

not identical categories. We shall later deal with composite reactions whose rate equation can 

sometimes have the form of an integer order, but molecularity is not meaningful for composite 
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reactions which consist of several elementary reactions. We can also find composite reactions 

which have an order that is not an integer number, while molecularity always refers to integers. 

It is worth mentioning why termolecular reactions are not frequent. The probability of 

simultaneous encounter (or, in gas phase, of simultaneous collision) of three molecules is much less 

frequent than that of two molecules. For this reason, the termolecular process is extremely slow, and 

in many cases, there is an equivalent route with a complex mechanism which is faster, and largely 

masks an eventual termolecular process. 

2.1. Solution of rate equations of integer order reactions 

As we have seen, rate equations of elementary reactions are always of integer order; thus, the 

title of this section might well have been also “solution of rate equations of elementary reactions”. 

However, this would exclude the possibility for composite reactions to be of integer order, though 

there are plenty of examples for this behaviour. One of the possible forms of a general integer order 

reaction is the case when the initial concentrations of the reactants are identical. (This is necessarily 

the case if, for example, two reacting molecules are identical.) In this case, the relevant rate 

equation has the form 

 − 	��		�� = ��� , (2.8) 

if the concentration c refers to a component with unit stoichiometric number. In mathematics, this 

kind of differential equation is called separable as the dependent variable c and the independent 

variable t can be separated to the opposite sides of the equation, then both sides can readily be 

integrated to get an implicit function of the independent variable. The above differential equation 

can be written in the separated form  

 − 	�			�2	 �� = ��� . (2.9) 

Integrating both sides we can get the solution as 

 −3 	�			�2	 �� = 3��� . (2.10) 

Evaluating the integrals, we can determine the primitive functions up to an undetermined additive 

constant. (It is enough to write one single constant; the two constants arising from the two 

integrations can be combined.) To find the primitive function, we can realise that the integrands at 

both sides are simple power functions. On the right side – after factoring out k from the integration 

– we get 1 = �5, while on the left side, we get 
	�			�2	 = �6�. Substituting their primitive functions in 

place of the integrals, the general solution is 

 − 	�782			�6� = �� + 9  , (2.11) 
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where the left side can be re-written in a more transparent form: 

 
�	(�6�)	�287	 = �� + 9 (2.12) 

From this general solution, we can get the particular solution by determining the undetermined 

integration constant I with the help of the initial conditions. For the first-order ordinary differential 

equation, one initial condition is sufficient; the most convenient in this case is to give the value of 

the concentration at the very beginning of the reaction. Let us denote this concentration at t = 0 by 

co. (Further on we will call this concentration as the initial concentration.) Substituting t = 0 and 

c = co , we readily get the value of the integration constant as 

 9 = �	(�6�)�:287	 (2.13) 

Let us write this result into the general equation: 

 
�	(�6�)	�287	 = �	(�6�)�:287	 + �� (2.14) 

Multiplying both sides by (n – 1) we can get a somewhat simpler form 

 
�	�287	 = �	�:287	 + (; − 1)��  , (2.15) 

from which it is straightforward to express the explicit solution c (t): 

 � = < �	 7	=:287		>	(�6�)?�	
287

 (2.16) 

We can also rewrite the (n – 1)-th root in a power expression form equivalent to the above: 

 � = @ �	 7	=:287		>	(�6�)?�	A
7	287	

   (2.17) 

It is worth noting that there is also an alternative method to solve the differential equation by 

evaluating definite integrals in accordance with the initial condition. To do this, we evaluate the 

right side integral in Eq. (2.10) over the limits from the time of the initial condition 0 to an arbitrary 

final time tf , and the left side integral with respect to c from c(0) to c(tf): 

 −3 	�			�2	 ���(�B)�(5) = 3 ����B5  (2.18) 

Evaluating the integral we get the result 

 
�	(�6�)	 C �	[�(�B)]287	 	− �	�:287		F = ��G (2.19) 
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As this solution is valid for any final time tf and the corresponding concentration c(tf), we can 

substitute t in place of tf and c in place of c(tf), thus getting the same form of the solution as before:  

 
�	(�6�)	�287	 	−	 �	(�6�)�:287	 = �� (2.20) 

Some textbooks and research papers commit a severe formal error while using the definite 

integration by not making a difference between the dummy integration variable and the limit of the 

integration; in the above example they would write incorrectly 

 −3 	�				�2	 ����: = 3 ����5  . (2.21) 

We can easily see that this should not and cannot give the correct result we want to have, as the 

limit of integration always changes with the value of the integration variable. However, with the 

correct notation of using a different symbol for the dummy integration variable and the limit of the 

integration, the pencil work (especially the keyboard work) is not really simpler than in the case of 

evaluating the indefinite integrals and then calculating the integration constant. This procedure has 

the advantage that the possibility of introducing incorrect notation (and result) is avoided. Thus we 

shall follow the way to get the general solution first and then evaluating the integration constant to 

get the particular solution for the initial value problem. 

Let us return to the solution as expressed in Eq. (2.16). It is readily seen that this solution is not 

applicable for all values of the reaction order n; for n = 1, the time dependence disappears and the 

fraction 1/0 cannot be interpreted either. This frequently happens in the practice of natural 

sciences; the solution of a mathematical model does not always give meaningful result within all 

physically possible conditions. Another related interesting property is that, though the function itself 

can be interpreted and gives mathematically meaningful results (in case n ≠ 1) for times t < 0, this 

does not have any physical (or chemical) meaning either, as no reaction occurs before the start of 

the reaction, i. e. before t = 0; thus, the solution in this time region cannot be interpreted either. We 

shall return to the case of n = 1, but let us first explore the properties of the function given in Eq. 

(2.16). 

The disappearance of reactants is traditionally characterized by the so called half-life. By 

definition, this is the instant  � = ��/I , when the concentration of the reactants becomes c = co/2. It 

can readily be calculated by writing co/2 in place of c in the implicit solution (2.15): 

 
I	�:287 = �	�:287	 + (; − 1)���/I  , (2.22) 

By rearranging we get the half-life ��/I as: 

 ��/I = 	I2876�		(�6�)?	 �	�:287	 (2.23) 
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Observing this result it is obvious that – not surprisingly – this formula of the half-life is not 

meaningful for first order reactions, i. e. n = 1. For any n ≠ 1 it can be seen that the sign of the first 

and the second coefficient is always the same, and the second coefficient depends on the initial 

concentration.  According to this, reactions having an order greater than 1 “slow down” while 

proceeding, in the sense that the second time period needed to reduce the concentration by half is 

longer, than the first time period necessary to halve the initial concentration, etc. Conversely, 

reactions having an order less than 1 “accelerate” while proceeding, in the sense that successive 

half-lives during the reaction become less and less due to the reduction of the concentration. 

It is worth discussing an aspect of the solution of the rate equations that is typically generously 

treated in older textbooks. Before powerful computers we use nowadays would have been widely 

accessible, it was much easier to determine the parameters of functions (which are co , n and k in 

case of the solution of n-th order reaction rate equations) using graphical methods. The simple and 

easy-to-use tool to fit functions was the (straightedge) ruler. However, as the ruler enabled only to 

draw straight lines, for this purpose, functions had to be “linearized”. The linearized version of the 

solution of n-th order reaction rate equation is the implicit solution in the form of Eq. (2.15): 

 
�	�287	 = �	�:287	 + (; − 1)�� (2.24) 

We can see that plotting the transformed 
�	�287	 of the concentration as a function of time t we would 

get a straight line whose intercept (its value at t = 0) were 
�	�:287	 and its slope (; − 1)�. If we apply 

the ruler to draw a line across the measured points in this plot, the intersection of this line with the 

vertical axis (at t = 0) is theoretically 
�	�:287	 and its slope (; − 1)�. Knowing the value of n, we 

could determine k from the slope. 

Moreover, the order of the reaction can also be determined by the same technique of fitting a 

straight line with the ruler. Returning to the n-th order rate equation (2.8), let us write in place of the 

derivative on the left side its absolute value in the equation: 

 J	��		�� J = ��� (2.25) 

Let us take the logarithm of both sides: 

 log J	��		�� J = log� + ;	log� (2.26) 

We can see that plotting the transformed values log J	��		�� J as a function of the transformed values 

log c, these points will be aligned along a straight line whose intercept (its value at log c = 0) will 

be log k, while its slope n. (This way, not only n but – in principle – log k could also be determined. 

This is the reason that this method is called the differential method to determine the rate 
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coefficient.
1
) If we want to have a quick and simple picture concerning the order of reaction, the 

differential method may be a suitable choice. However, we should realize that numerical derivation 

of the discrete experimental data of the function c(t) is needed, along with the logarithmic 

transformation of the function itself and its derivative. Furthermore, a difficulty also arises when we 

should allocate the derivatives (reaction rates) calculated from adjacent discrete data to some 

intermediate time between the two data points. These procedures thus contain some arbitrariness, 

and the transformations (sometimes quite heavily) distort the experimental errors. In addition, 

numerical derivation always increases errors. As a consequence, kinetic parameters determined this 

way are necessarily charged with high uncertainty. 

All the problems mentioned above can easily be avoided if we do not insist using the straight-

edge method but perform a (nonlinear) parameter estimation based on the untransformed measured 

data and the explicit solution of the rate equation. Therefore, we shall only briefly mention the usual 

linearization tricks of the concentration functions enabling (a typically inaccurate and distorted) 

parameter estimation with a graphical procedure using a straightedge. The knowledge of this 

outdated method can help to properly understand and interpret kinetic parameters and their 

limitations reported in older publications, determined with graphical methods. Nowadays, with the 

availability of powerful computers and a great choice of suitable statistical and numerical software 

packages we should prefer direct nonlinear methods to get more reliable, less distorted kinetic 

parameters. 

Up to now, we only explored the solution of the rate equation of the reaction of order n for the 

case of equal initial concentration of the reactants. Let us find solutions for different initial 

conditions as well, and also for different values of the reaction order n. Further on in this text we 

shall see that there exist some special reactions that are zeroth-order. (E. g. heterogeneous catalytic 

reactions.) The solution of their rate equation can easily be derived from the solution of the n-th 

order reaction discussed above. Let us begin the detailed analysis with this reaction type. 

2.1.1. Zeroth-order reactions 

The rate equation for a reaction which is zeroth-order can be written as  

 − 	��		�� = � , (2.27) 

for the value of the power function c
0
 is always 1, independently of the actual value of c. The 

solution of this rate equation can easily be written by substituting n = 0 into the general solution of 

the n-th order reaction: 

                                                
1
 In addition to this name, it is also called the van’t Hoff method, from Jacobus Henricus van’t Hoff (1852-1911), the 

Dutch chemist who first described it. He was the first Nobel Prize winner in 1901 “for his discovery of the laws of 

chemical dynamics and osmotic pressure in solutions”. 
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 � = �M − �� (2.28) 

It is obvious that this function cannot be interpreted without limitations either. Following the 

start of the reaction at t = 0, after the elapsed time t = co /k, the reactant is completely consumed and 

the reaction will halt; thus, negative c values after that do not have any physical meaning. To 

emphasize this condition, the concentration function can be given as � = �M − ��, if 0 < t < co /k, 

and zero, if t > co /k. We can also see that the unit of the rate coefficient k for a zeroth-order reaction 

is mol dm–3 s–1 in terms of molar concentration and seconds as time units – in accordance with the 

condition that the unit of the ratio co /k should be seconds. The half-life of reaction – in addition to a 

substitution of n = 0 into the general expression of the n-th order reaction – can be calculated easily 

by realising that the decrease of the reactant concentration is proportional to time until it reaches 

zero at the instant co /k, thus it is t1/2 = co /2k. Obviously, consecutive half-life periods decrease by 

50% each time after the concentration becomes half of the previous one. The plot of the 

concentration of the reactant is a straight line between co at t = 0 and zero at t = co /k. 

The concentration as a function of time for the product(s) of the reaction can be obtained from 

the above solution relying on the stoichiometry. If the stoichiometric number of the reactant is 1 and 

that of a product is νP in the reaction  reactant → products, then the concentration of the product as 

a function of time can be given as: 

 �N = O"N��	, ha	0 < � < �M/�	"N�M	,			ha	� > �M/�									 (2.29) 

This is easy to justify based on the relation that νP moles of the product are produced from 1 mol of 

the reactant. Thus �N = "N[�M − (�M − ��)] = "N��. 
2.1.2. First-order reactions 

The rate equation for a first-order reaction is 

 − 	��		�� = �� . (2.30) 

It is readily seen that the unit of the rate coefficient k is simply s
–1

. The solution of this equation 

cannot be given by substituting n = 1 into the solution obtained for the general n-th order reaction, 

as it does not provide a meaningful result. In such cases, we should solve the actual rate equation. 

As this equation is also separable, after separation and insertion of the integrals we get: 

 −3 	�		V �� = 3 ��� (2.31) 

Writing the primitive functions of both sides, the general solution is the following: 

 −ln	� = �� + 9 (2.32) 
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Substituting the plausible initial condition (� = �M	when t = 0), the integration constant can be 

obtained as 9 = −	ln	�M. Let  us plug this into the above equation, and multiply it by – 1 to get 

 ln	� = ln	�M − �� . (2.33) 

The explicit solution is readily obtained as 

 � = �MZ6?� . (2.34) 

The concentration function of the product(s) of the reaction can be obtained again relying on 

the stoichiometry. If νP moles of the product are produced from 1 mol of the reactant, based on the 

relation �N = "N(�M − �), we can write 

 �N = "N�M(1 − Z6?�) (2.35) 

which gives the concentration of a product with stoichiometric number νP as a function of time. 

The validity of the above concentration functions are – in principle – not limited for times 

greater than zero. However, it is worth to consider that if the reactant concentration multiplied by 

the volume results in a value inferior to the inverse of the Avogadro constant, there should be less 

than one reactant molecule in the reaction vessel. Obviously, this does not have a physical meaning; 

thus, in this sense, the validity of the concentration function is limited also in case of a first-order 

reaction. (However, the concentration would not become negative, only decrease monotonously; 

thus the concentration function would predict an ever smaller fraction of the last molecule if the 

amount of the reactant is divided by the Avogadro constant.) 

The half-life of the first-order reaction has a unique property. We can calculate it by 

substituting co/2 in place of c: 

 
	V: 	I = �MZ6?�7/[ (2.36)  

Dividing both sides by co and taking logarithms we get the result: 

 ��/I = 	\]	I		?	  (2.37) 

As can be seen, the unique property is that the half-life is independent of the initial 

concentration co. Accordingly, the concentration of the reactant for a given first-order reaction is 

reduced by 50 % within the same time intervals, also in the case of consecutive time periods. In 

other words, the reactant is consumed always at the same pace, thus the reaction does not speed up 

nor slow down during the reaction. (It could be foreseen from the behaviour of the half-life of the 

n-th order reactions; below n = 1, the half-life decreases, above 1 it increases with decreasing initial 

concentration. Approaching 1 either from below or from above would lead to the same result.) 
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We can also notice that the implicit solution (2.33) is already appropriate for the estimation of 

kinetic parameters using a graphical plot and a ruler; plotting the measured log c – t data in a 

diagram, the discrete points are found along a straight line. The slope of this line is k and its 

intercept ln	�M. 

2.1.3. Second-order reactions 

The rate equation for a second-order reaction if the concentrations of the reactants are 

identical can be written in the form 

 − 	��		�� = ��I . (2.38) 

We can see that the SI unit of the rate coefficient k is dm
3
 mol

–1 
s

–1
. The solution of this equation 

can be given by substituting n = 2 into the solution obtained for the general n-th order reaction: 

 � = �	 7=: 	>	?�	 (2.39) 

The concentration function of the product(s) of the reaction can be obtained as usual, relying 

on the stoichiometry. If νP moles of the product are produced from 1 mol of the reactant, i. e. �N = "N(�M − �), we can write 

 �N = "N�M �1 − �	�	>	�:?�	� (2.40) 

for the concentration function of the product. 

It is worth noting here as well that, if the reactant concentration multiplied by the volume 

results in a value inferior to the inverse of the Avogadro constant, there would remain less than one 

reactant molecule in the reacting system; thus the validity range of the solution is limited also in this 

case. However, negative concentrations would never result from the concentration function. 

As we have already stated, the half-life of the reactant of a second-order reaction depends on 

the initial concentration. Substituting co/2 in place of c, we get 

 
	�:	I = �	 7=: 	>	?�7/[	 , (2.41)  

from which we can express the half-life: 

 ��/I = 	�		?	�: 	 (2.42) 

This reveals that the half-life of second order reactions is inversely proportional to the initial 

concentration co. Accordingly, each consecutive reduction by 50 % of the concentration takes twice 

as much time as the previous reduction by half. As the half-life increases during the reaction, we 
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can say that – in this sense – the reaction “slows down” as it proceeds. A plot of the reactant 

concentration as a function of time clearly reflects this tendency. 

To get a formula for using the ruler to estimate kinetic parameters, we can start from Eq. 

(2.39). Taking the reciprocal of both sides we can get the following equation: 

 
	�		�	 = 	 �	�: 	+ 	�� (2.43) 

We can see that the inverse of the concentration as a function of time results in a plot where the 

discrete 
	�		�	 − � data points are aligned along a straight line. The slope of the line is the rate 

coefficient k and the intercept gives 
�	�:	. 

Those who paid close attention to the above derivation might have noticed that the obtained 

solution of the rate equation applies only for the case when the concentrations of the two reactants 

are identical, but not the reactants themselves. When the two reacting molecules are the same, the 

rate equation (2.38) slightly changes, and so does its solution. Let us begin with the relevant 

stoichiometric equation: 

 2A	 → 	Products (2.44) 

The proper rate equation is the following: 

 − ��. 	�� = 2���I (2.45) 

For the sake of simplicity, let us drop the subscript A further on: 

 − ��	�� = 2��I (2.46) 

It is worth noting that the factor 2 appears in the rate equation as the reaction rate always refers to 

the stoichiometric equation; while the rate relative to “one mol equation” is proportional to ��I, the 

rate relative to one mol reactant is twice as large: 2��I. (We would get the same result by adding 

two rate equations (2.38) which refer only for one mol reactant.) We should remember this property 

of the rate equation; to get the rate of change of a component, the product of the rate coefficient and 

the relevant concentration(s) should be multiplied by the stoichiometric number of the component. 

It is readily seen that this change results only in a replacement of k by 2k. Accordingly, the 

relevant solution has the form 

 � = �		 7	=: 	>	I?�	 , (2.47) 

and the half-life will also change accordingly: 

 ��/I = 	�			I?�:	 (2.48) 
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Compared to when two different molecules react in a second-order reaction, in case of two identical 

molecules, the half-life is reduced by a factor of two. This is not surprising as it follows from the 

fact that the rate of disappearance is twice as fast in the latter case than in the former. 

The concentration of the product(s) of the reaction as a function of time can be obtained in this 

case by replacing the stoichiometric number νP by νP /2, and writing 2k in place of k in Eq. (2.40). 

Those who paid close attention to the above derivations might also have noticed that the 

solution of the rate equation was applied only for the cases when the initial concentrations of the 

two reactants were the same, and when the two reactants were chemically identical. We still not 

discussed the case of two different reactants with non-identical initial concentrations. Let us recall 

the relevant stoichiometric equation 

 A	 + 	B	 → 	Products  , (2.49) 

along with the corresponding rate equation 

 − ��. 	�� = − ��/ 	�� = �����  . (2.50) 

Seemingly, there are two variables on the right side, but the stoichiometry reduces this to one 

underlying variable; the same amount of reactant A will always be consumed as that of the reactant 

B. If the volume does not change during the reaction, this relation also applies for the 

concentrations. Let us denote the decrease in concentration (the progress variable) by x, and the 

(different) initial concentrations of the reactants by ��,M and ��,M	, respectively. Using this notation, 

the rate equation can be written as  

 − �(�.,:6`)	�� = − �(�/,:6`)	�� = �(��,M − a)(��,M − a) (2.51) 

We can simplify the two time-derivatives by realising that ��,M and ��,M do not depend on time: 

 − �(�.,:6`)	�� = − 	��.,:	�� + 	�`		�� = 	�`		��  (2.52) 

We get a similar result for B as well. The differential equation to solve thus simplifies in the 

following form: 

 
	�`		�� = �(��,M − a)(��,M − a) . (2.53) 

This differential equation is also a separable one. After separation, we get the two sides of the 

equation ready to integrate: 

 3 	�			(�.,:6`)(�/,:6`)	�a = 3 �	�� (2.54) 
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The right side provides the well-known primitive function of a zeroth-order power function, while 

we get a rational algebraic fraction to integrate on the left side. We can recall that the integration of 

this fraction can be done by resolving it into the sum of partial fractions: 

 3 	�			(�.,:6`)(�/,:6`)	�a = 3C 	�			(�/,:6�.,:)(�.,:6`)	+ 	�			(�.,:6�/,:)(�/,:6`)	F �a (2.55) 

The integration can readily be performed resulting in the following primitive function: 

 −ln 	(�.,:6`)			(�/,:6�.,:)	− ln 	(�/,:6`)			(�.,:6�/,:)	 	+ 	�b;c�d;� (2.56) 

The solution of the differential equation including the integration constant I, after some rearrange-

ment can be written as:  

 
	�			(�.,:6�/,:)	 ln 	(�.,:6`)			(�/,:6`)	 = �� + 9 (2.57) 

Upon substitution of the initial condition (x = 0 at t = 0) the integration constant I becomes  

 9 = 	�			(�.,:6�/,:)	 ln 	�.,: 			�/,:	  .  

If we plug this in the solution and make use of the identities of the logarithm function we get:  

 
	�			(�.,:6�/,:)	 ln 	�/,:(�.,:6`)			�.,:(�/,:6`)	 = �� (2.58) 

Let us rewrite now the original symbols cA and cB in place of ��,M − a és ��,M − a, and we already 

have the implicit solution: 

 
	�			(�.,:6�/,:)	 ln 	�/,:	�.		�.,:	�/	 = �� (2.59) 

This result is already appropriate for the estimation of kinetic parameters using a graphical plot 

and a ruler; plotting the left-side transform of the concentrations as a function of time, discrete 

experimental points are found along a straight line across the origin, which has a slope of k. 

To find the explicit solution, we should express the concentrations cA and cB from this 

equation. To do so, let us first make use of the relation �� = ��,M − a , and add the difference ��,M − ��,M to �� = ��,M − a. This results in �� = ��,M − a = ��,M − ��,M + (��,M − a), which is 

identical to �� = ��,M − ��,M + ��. This way we have eliminated ��, and the remaining variable in 

the solution (2.59) is ��. After some rearrangement and applying inverse logarithm (exponentiation) 

we can get the following result: 

 �� = 	�.,:6�/,: 			�	6		=/,:	=.,: 	e(=.,:8=/,:)fg	 (2.60) 
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It is easy to see that – for symmetry reasons (the role of A and B can be interchanged) – the 

time-dependence of the concentration of B is similar to this: 

 �� = 	�/,:6�.,:			�6		=.,:	=/,: 	e(=/,:8=.,:)fg	 (2.61) 

The above two equations provide the solution for the rate equation in general of second-order 

reactions. 

However, this solution cannot be used within all circumstances. If the initial concentrations of 

A and B are identical, we get an expression 0/0 for the concentration functions that cannot be 

interpreted. Luckily, we have the previous solutions (2.39) or (2.47) for this case. 

It is worth noting that the half-life of the reaction is not unique in this case nor can it be defined 

within all initial conditions. What is always meaningful is the half-life of the reactant whose initial 

concentration is inferior with respect to the other reactant. This reactant can namely be completely 

consumed during the reaction. The reactant with higher initial concentration can only be reduced by 

half if its initial concentration is less than twice the concentration of the other reactant. 

2.1.4. Third-order reactions 

The rate equation of a third-order reaction for three different reactants with identical initial 

concentration can be written in the following form: 

 − 	��		�� = ��h (2.62) 

We can see that the SI unit of the rate coefficient k is dm6 mol–2 s–1. The solution of this rate 

equation can be obtained by substituting n = 3 into the solution of the general n-th order rate 

equation with the plausible initial condition c = co at t = 0: 

 � = < �	 7=:[ 	>	I?�		 (2.63) 

The concentration function of the product(s) of the reaction can be obtained as usual, taking 

into account the stoichiometry. If νP moles of the product are produced from 1 mol of the reactant, i. 

e. �N = "N(�M − �), we can write 

 �N = "N�M i1 −< �	�	>	[fg=:[ 	j . (2.64) 

The half-life of the reaction can be calculated by solving the equation 
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	�:	I = < �	 7=:[ 	>	I?�7/[	 . (2.65) 

After both sides are squared and their reciprocals taken, we get the result 

 ��/I = 	h			I?�:[	 . (2.66) 

This shows that the half-life of second order reactions is inversely proportional to the square of 

the initial concentration co. Accordingly, each consecutive reduction by 50 % of the concentration 

takes four times as much time as the previous reduction by half. Thus the half-life of third-order 

reactions increases quite largely during the reaction, which means that – in this sense – the reaction 

“slows down” significantly as it proceeds. A plot of the reactant concentration as a function of time 

reveals this tendency. 

To estimate kinetic parameters using a graphical plot and a ruler, we can derive the necessary 

linearized relation by starting from Eq. (2.63). After both sides are squared and their reciprocals 

taken, we get the following equation: 

 
	�		�[	 =	 �	�:[	 	+ 	�� (2.67) 

Thus, plotting the inverse square of the concentration as a function of time, discrete experimental 

points are found along a straight line of slope of k and intercept 
�	�:[	 . 

It is clear that there are reactions with different initial conditions than the above one, and we 

can also imagine that three identical molecules react and the reaction rate is proportional to the third 

power of their concentration.  In the latter case we can follow the procedure we have discussed with 

second-order reactions. Starting with the relevant stoichiometric equation 

 3A	 → 	Products , (2.68) 

a factor of 3 will appear in the corresponding rate equation: 

 − ��. 	�� = 3���h (2.69) 

The solution of this differs also from the previous case only that it contains 3k in place of k. 

Dropping the subscript A from the symbol of the concentration, the proper solution reads as 

follows: 

 � = < �	 7=:[ 	>	l?�		 (2.70) 

The half-life of the reaction can be obtained in a similar manner: 
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 ��/I = 	h			l?�:[	 (2.71) 

If the initial concentration of the reactants is not identical, we can still discern two cases. One 

is when three different reactants take part in the reaction having different initial concentrations, and 

the other is when two identical reactant molecules and a third, different one have different initial 

concentrations. Let us begin the description of the second case by writing the related stoichiometric 

equation: 

 2A	 + 	B	 → 	Products (2.72) 

The corresponding rate equation has the following form: 

 − �I ��. 	�� = − ��/ 	�� = ���I�� (2.73) 

The two variables on the right side can also be reduced to one by realising that the amount of 

reactant A consumed will always be twice as much as that of the reactant B. If the volume does not 

change during the reaction, this relation also applies for the concentrations. Let us denote the 

decrease in concentration (the progress variable) by x, and the (different) initial concentrations of 

the reactants by ��,M and ��,M	, respectively. Using this notation, the rate equation can be written as 

 − �I �(�.,:6`)	�� = − �(�/,:6`)	�� = �(��,M − a)I(��,M − a) (2.74) 

We can simplify the two time-derivatives by taking advantage that ��,M and ��,M do not depend on 

time: 

 
�I �`	�� = �(��,M − a)I(��,M − a) (2.75) 

The other differential equation differs only by a factor of 2 from this one. The implicit solution of 

this differential equation can be obtained by the method of partial fractions (similar to the second-

order case) and – by substituting the initial condition (x = 0 at t = 0) and re-substituting the original 

time-dependent concentrations cA and cB – yields 

 
	�			(�.,:6I�/,:)	 C �	�.,: 	− �	�.	F + 	�			(�.,:6I�/,:)[	 ln 	�/,: 	�.		�.,:	�/ 	 = �� . (2.76) 

This result is already appropriate for the estimation of kinetic parameters using a graphical plot 

and a ruler; plotting the left-side transform of the concentrations as a function of time, discrete 

experimental points are found along a straight line across the origin, with a slope of k. 

Unfortunately, the explicit solution is not known for this case. Thus, if we want to estimate kinetic 

parameters without relying on the graphical method, we should use numerical methods including 

numerical inversion of the implicit solution, or numerical integration to get time-dependent 

concentration values. 
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Finally, let us discuss the general third-order reaction with three different initial concentrations ��,M	, ��,M	, and ��,M	, respectively. Starting from the relevant stoichiometric equation 

 A	 + 	B	 + 	C	 → 	Products , (2.77) 

we can write the corresponding rate equation in the following form: 

 − ��. 	�� = − ��/ 	�� = − ��1 	�� = ������� (2.78) 

If the volume does not change during the reaction, we can express time-dependent concentrations 

again with the help of a single progress variable x. Using this notation, the rate equation can be re-

written as 

 − �(�.,:6`)	�� = − �(�/,:6`)	�� = − �(�1,:6`)	�� = �(��,M − a)(��,M − a)(��,M − a) (2.79) 

We can simplify the time-derivatives by making use of the time-independence of the initial 

concentrations and get the differential equation to solve: 

 
�`	�� = �(��,M − a)(��,M − a)(��,M − a) (2.80) 

The solution of this differential equation can also be obtained by the method of partial fractions. 

After integration, substitution of the initial condition (x = 0 at t = 0) and re-substitution of the 

original time-dependent concentrations – we get the implicit solution 

 
	\]	 =.	=.,:		(�/,:6�.,:)(�.,:6�1,:)	 + 	\]	 =/	=/,:		(�.,:6�/,:)(�/,:6�1,:)	+ 	\]	 =1	=1,:		(�.,:6�1,:)(�1,:6�/,:)	 = �� . (2.81) 

This result is also appropriate for the estimation of kinetic parameters using a graphical plot 

and a ruler; plotting the left-side transform of the concentrations as a function of time, discrete 

experimental points are found along a straight line across the origin, with a slope of k. 

Unfortunately, the explicit solution is not known for this case either. Thus, if we want to estimate 

kinetic parameters without relying on the graphical method, we should use numerical methods 

including numerical inversion of the implicit solution, or numerical integration to get time-

dependent concentration values. 

2.2. Generalisation and extension of the order of reaction; pseudo-order 

As it is mentioned in the introductory part of this chapter, there exist composite reactions 

which do have an order but this order is not an integer. (For elementary reactions, the order is 

always a positive integer.) Accordingly, we can generalise the order of reaction for any empirical 

rate equation which can be written in the form 

 − 	��m	�� = "n�∏ ��o�p�!�  . (2.82) 
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In this equation, r is the number of reactants, �n and �� are concentrations, νj is the stoichiometric 

number, and the symbol q� is called the order of the reaction with respect to the i-th component (or 

component Ai in Eq. (1.1)). The sum of the orders ∑ q�p�!� = ; is called the overall order of the 

reaction. In relation to this name, q� is also called the partial order of Ai . In a general (composite) 

reaction, the partial order of components as well as the overall order should not be a positive 

integer; it may be a negative integer or a rational nonintegral number. It is worth noting that a 

nonintegral order always implies a composite reaction. 

As we shall see further (when discussing composite reactions), the rate equation of the majority 

of composite reactions cannot be written in the form of Eq. (2.82). At this point we could ask why 

such a generalisation of the reaction order should be considered. We can have the answer also at the 

discussion of composite reactions; when studying unknown reactions, the notion of reaction order 

can help to explore kinetic properties. Kineticists often begin this exploration by “forcing” the 

reaction to behave as if its rate equation would have the form of Eq. (2.82), thus at least one of its 

reactants would have a genuine – mostly integer – order. The simplest way of forcing this behaviour 

is to add all but one reactant in such great excess that their concentrations during the progress of the 

reaction remain constant to a good approximation. (This technique is sometimes referred to as 

flooding, or as isolation.) A frequently applied example is the case of two reactants, when the 

concentration of one reactant is many times that of the other. 

Let us consider the case when the rate equation of the reaction of components A� and AI can be 

written in the second-order form 

 − ��7	�� = − ��[	�� = ����I  . (2.83) 

For example, in case of �I = 100�� it is easy to see that, even after the reaction is completed, the 

concentration of AI only changes by 1 percent. The typical error of time-dependent concentration 

measurements being in this order of magnitude, we do not make a big mistake by considering �I as 

a constant throughout the reaction. In that case, the product �′ = ��I can also be considered 

constant, thus we can rewrite the rate equation as 

 − ��7	�� = �′�� . (2.84) 

We can see that it is formally identical to a first-order rate equation. However, not being a genuine 

first-order reaction, it is called a pseudo-first-order reaction1. 

The pseudo-first-order rate coefficient has an interesting property; its usual unit is not s–1, but 

dm
3
 mol

–1
 s

–1
, according to the rate equation (2.83) or the product ��I. Formerly, when parameter 

estimation had been performed using graphical methods and a ruler, it was common practice to 

                                                
1 The Greek prefix ψευδο- has the meaning false, or not a real one. 
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apply the pseudo-first-order results to determine a second-order rate constant. To do so, calculated 

linearized (ln �� – t) transformed values have been plotted at different concentrations �I. From these 

diagrams, the slopes of the lines from different diagrams were determined, as discussed in section 

2.1.2. Pseudo-first-order rate coefficients obtained this way were plotted as a function of the 

corresponding concentrations �I	, and a staraight line was fitted to the data points in the diagram. 

The slope of this line was the (graphically) estimated value of the second-order rate coefficient, 

according to the relation �′ = ��I. 
In case of the graphical parameter estimations described, there is no suitable method to 

determine the uncertainty of the rate coefficients. Performing the described line fittings using 

appropriate statistical methods, we could calculate correct uncertainties of the pseudo-first-order 

rate coefficients, as well as the resulting second-order rate coefficient. However, it is pointless to 

follow this tedious method for two reasons. The first one is that the distortion of the errors due to 

the transformation of the original data would lead to biased results. The second one is that the 

statistical properties of the results obtained after the two stages (e. g. the number of the degrees of 

freedom of the probability distribution of the second-order rate coefficient) were unfavourable. A 

more simple, more precise and statistically more favourable method is to fit the concentration 

function (2.60) to all measured points (obtained by measuring both concentrations) and estimate the 

second-order rate coefficient as a parameter of this function, along with its uncertainty. 

However, the method of flooding (or isolation) is a usual way to study unknown reactions. If it 

turns out for example, that – in case of two reactants – the reaction has a pseudo-first-order kinetics 

for both reactants, it is a reasonable conclusion that the overall reaction is a second-order one, and 

we can put up a suitable experimental design to determine the second-order rate coefficient using 

proper non-linear parameter estimation methods. 
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