MICROCANONICAL FORMALISM

MICROCANONICAL ENSEMBLE:
N particles
total energy E
In volume V

probability density function
of state i

L2 sum of states, or partition function
(Zustandssumme)

The microcanonical formalism of statistical mechanics results in
entropy-based equation of state in the following form:

S(E,V,N)= kIn £ (E,V,N)

The microcanonical “prescription” is the following:

Count the number of all accessible states, and calculate entropy
Using this equation of state, we know all possible macroscopic state.



S(E,V,N) = kInQ(E, V,N)
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CANONICAL FORMALISM

CANONICAL ENSEMBLE: _kE_Ti
N particles D = € -
In volume V Ze‘ﬁ
at temperature T vi

probability density function
of state i

_E
Q= Ze KT | canonical partition function,
Vi or canonical sum of states

The canonical formalism of statistical mechanics results in
free-energy based equation of state in the following form:

F(T,V,N)=—-kT InQ(T,V,N)

The canonical “prescription” is the following:
Calculate the canonical partition function, and express the free energy F



FUNDAMENTAL EQUATION of an IDEAL GAS

In molecules, the following modes can be discerned in general:

— three translational modes
— rotational modes
— vibrational modes

— electronic modes (a.k.a. states)

The modes in gas-phase molecules in an ideal gas are independent;

thus, their energies are additive (no interactions),
and the partition function can be factorised:

Q _ Qtrans .Qrot .Qvib .Qel
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Due to the commutability of multiplication, we can first write the
product of molecular partition functions g in the form

trans ~rot ~vib ~el
=9 -q -9 -q
and then calculate their product for all N molecules of the ensemble.

Let us start with the translational partition function (of an ideal gas)
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Using the thermal wavelength A =




The order of magnitude of the thermal wavelength and the translational
partition function in ambient temperature gas

A=178pm g =1,773-10°°

For a gas containing N atoms:

3N
Qtrans = (Qtrans)N _ 1 (Z”kaj /Z.VN

- NIU K
We see a division by N! here, as the number of states in a gas

of N molecules is much less than the simple product would predict.

It is due to the fact that gas molecules are indistinguishable.
This is the reason for dividing by N! (The number of possible permutations.)

VN (2zmkT 72
Thus, the partition function becomes | Q = M ( 2 j




A general rotor (a 3-dimensional molecule) has 3 degrees of freedom;

thus, it has 3 rotational axis and 3 rotational constant.
Let us denote the rotational constants by A, B and C.

The partition function of such a (nonlinear) molecule:

0 n 1 ( kT jg/z ys (o : rotational
- symmetry
olhc ABC factor)

At ambient temperature, a multitude of rotational states is available.

In this temperature range, the typical value is R ~ 1000 .



The vibrational partition function for a harmonic oscillator:

1 V : Latin “vee”
g =|vV+= |hv
2

v: Greek “nu’

1
Take the zero point of the energy scale as &, = E hv=0

\Y

00 00 _hv
In this case: &, =vhy — qV:Ze—ﬁvhv:Z e T
v=0 v=0
hv

This is exactly the sum of the geometric series of of e kT , thus:

1—g KT




The vibrational partition function has the same form for all the normal
vibrations of the molecule. Thus, the overall vibrational partition function is:

' =0q"@)-9"(2)-...-9" (k)

At temperatures not too much higher than ambient,
qY(i) values are typically between 1 and 3.

Electronic partition functions:

In the majority of cases at ambient temperatures
only one state is available:
q- =1

Exception: degenerate ground states (e. g. alkali atoms’ spin-degeneration)

In these cases: g =9

gE is the degree of degeneration




Equilibrium constant in canonical formalism

First, let us express the free energy F

with molecular partition functions for a gas:

N

F =F(0)—KTINQ=F(0)—kTIn3_ =

N!
=F(0)—NKTIng+kT(NInN—-N)=
= F(0)—NKTIng+kTN(InN —1)

F(0) is fixing
the energy scale

applying Stirling’s
approximation:
IN(N)=2NInN-N

The molar free energy F, (substituting k N, = R):
F=F()-RTIhg+RTINN,—RT

F. :Fm(O)—RTInNi -

A

RT




Within the conditions T, P = constants the reaction equilibrium constant
can be given using the Gibbs potential G:

G=F+PV

With some “cheating” (using PV =nR T, for ideal gas mixtures only):

G =Fm(0)—RTInEI—m—RT+RT =F,(0)-RTIn-m.

m
A A

oY o RT
Let us denote by (|, the value of ,at p =p and V>~ = =
P

Thus, the standard molar Gibbs potential becomes

G*> =F,(0)-RTIn qlr\ﬂT
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using F = U —TS, we can express F_(0)in terms of U (0) as:

F(0) = Un(0) — T(0) S(0)

fT0)=0K » F (0)=U(© = G°=U, (0)-RTIn_Jn

A

We know: 4AG®= —RTInK ; by comparing this to G* we get:

ArGG:ArUm(O)—RTZr:In( Ef}] :ArUm(O)—RTInH( I‘i'lmej
=1 i=1
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InK:—AfU°+InH S,
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shorthand:
Ar Um(O) - ArUO

r r q Af UO
For the general reaction Z v, A =0 K = H m,| :

=1 i=




Thus, we have obtained the equilibrium constant for a reaction
where all the reacting components are ideal gas species.

©
This expression can always be used by replacing ( Ic\llm" j
A

by the “real” canonical partition function Qn% (e. g. from simulations)
In the exponent we still have the reaction energy at 7'= 0 temperature.

Summing up:

The equilibrium constant for the reaction Z v, A, =0
i=1

Vi ArUO
explained in canonical formalism is K = I I( O j .@ RIT

Oni s the standard molecular partition function,
A, U, is the reaction energy at T = 0 K temperature



For two particular reaction types this can be written in the following form:

If A+B <2 C

o _4Y,
then K_ NA qC e RT

g2 9

then K= €




Same equilibrium constants expressed with molar partition functions:

|f A+B <2 C
o _ AU
_ Qc RT
then K=—— — €
A B
If A < B
=S A4Uq
_ B RT
then K= s €
A




The End



