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Though shorter laser pulses can also be produced, pulses of the 100 fs range are typically used in femtosecond
kinetic measurements, which are comparable to characteristic times of the studied processes, making detection
of the kinetic response functions inevitably distorted by convolution with the pulses applied. A description of
this convolution in terms of experiments and measurable signals is given, followed by a detailed discussion
of a large number of available methods to solve the convolution equation to get the undistorted kinetic signal,
without any presupposed kinetic or photophysical model of the underlying processes. A thorough numerical
test of several deconvolution methods is described, and two iterative time-domain methods (Bayesian and
Jansson deconvolution) along with two inverse filtering frequency-domain methods (adaptive Wiener filtering
and regularization) are suggested to use for the deconvolution of experimental femtosecond kinetic data sets.
Adaptation of these methods to typical kinetic curve shapes is described in detail. We find that the model-
free deconvolution gives satisfactory results compared to the classical “reconvolution” method where the
knowledge of the kinetic and photophysical mechanism is necessary to perform the deconvolution. In addition,
a model-free deconvolution followed by a statistical inference of the parameters of a model function gives
less biased results for the relevant parameters of the model than simple reconvolution. We have also analyzed
real-life experimental data and found that the model-free deconvolution methods can be successfully used to
get undistorted kinetic curves in that case as well. A graphical computer program to perform deconvolution
via inverse filtering and additional noise filters is also provided as Supporting Information. Though
deconvolution methods described here were optimized for femtosecond kinetic measurements, they can be
used for any kind of convolved data where measured experimental shapes are similar.

Introduction

Deconvolution in chemistry dates back to the early 1930s.
The first (linear iterative) deconvolution method was originally
described in a physics journal1 and used mostly to “sharpen”
convolved experimental spectral lines. With the advent of
reasonably fast computers and the fast Fourier transform (FFT),
this had been replaced by the linear deconvolution method based
on Fourier transforms,2,3 which is usually called “inverse
filtering”.4 The need for deconvolution also emerged in the
evaluation of pulse radiolysis, flash photolysis, and later laser
photolysis results, when studied kinetic processes were so fast
that reaction times were comparable to the temporal width of
the pulse or lamp signals.5 A number of methods have been
used ever since to get the deconvolved kinetic signal. A critical
review of the deconvolution methods is described in two
papers,6,7 which deal mostly with the evaluation of nanosecond
to picosecond time scale fluorescence or luminescence data,
collected usually by single photon counting techniques.

The availability of femtosecond pulse lasers led to the
development of femtochemistry,8 where the time window
enables the very detection of the transition state in an elementary
reaction. However, due to the very small time window of the
measurement, a typical femtosecond kinetic trace usually
contains fewer data points than picosecond kinetic traces. All
deconvolution methods are very much sensitive to experimental
noise, so the “classical” deconvolution methods described in

refs 1-7 usually fail when applied to femtosecond kinetic data.
We have been working on developing model-free deconvolution
methods that can be used to deconvolve ultrafast kinetic traces.
Our preliminary results using inverse filtering have been
published in two short papers.9,10

In this paper we describe the application of nonlinear
deconvolution methods that we successfully use for model-free
deconvolution of femtosecond kinetic traces, based on a large
number of further computer experiments and data analysis since
the publication of refs 9 and 10. In the next section, we explain
the details of the procedure of ultrafast laser kinetic measure-
ments leading to the detected convolved kinetic traces. In the
following section we outline the mathematical background of
nonparametric deconvolution methods that might be used to
evaluate femtosecond kinetic data, followed by their imple-
mentation and numerical testing on synthetic (simulated) kinetic
traces. Finally, we show deconvolution results of measured
femtosecond kinetic data.

Convolution of the Detected Femtosecond Pump-Probe
Signals

Elementary chemical reactions occur on the time scale of
molecular vibrations, so they can only be followed with sub-
picosecond time resolution. Electronic devices with their top
frequency of about 10 GHz cannot follow changes at this time
scale. The necessary resolution is easily achieved using the
femtosecond pump-probe techniques,8,11 where reaction times
are coded in delay time between a pump pulse that initiates the
reaction and a probe pulse that probes the spectroscopic
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properties of the reactive system, while an integrated signal of
the detector is measured with the usual speed of the relevant
electronic device. Delay times on the femtosecond scale are
readily obtained by varying the optical path length of either
the pump or the probe beam. Considering the velocity of light
in air, a difference of 0.3µm in path length results in
approximately 1 fs in time delay. As both the pump and the
probe pulses should have a limited energy range (spectral width)
to get reasonable selectivity both in excitation and in detection,
the temporal width of the pulses cannot be too small, due to
the limitation imposed by the uncertainty relation.12 The usual
spectral width of about 5 nm in the visible range corresponds
to about 100 fs transform limited (minimal) pulse width. If
characteristic times of the studied reactions are in the few
hundreds of femtoseconds time scale, the convolution of the
“instantaneous” kinetic response with the pump and the probe
pulse profiles can severely distort the detected signal.

The description of this convolution in quantum mechanical
terms is extensively discussed in a recent paper.13 Here we show
the convolution in terms of the experiments and measurable
signals. For the sake of simplicity, let us deal with absorption
measurements. A transient absorption can be described by Beer’s
law:

whereI0 is the detected light intensity without excitation andI
is the detected light intensity after excitation,ε is the (decadic)
molar absorptivity coefficient,c is the concentration of the
transient species generated by the excitation, andl is the optical
path length in the absorbing medium. Ifεcl is small, then the
exponential can be replaced by its Taylor series up to the first-
order term:

To make use of this approximation, differential optical densities
(denoted by∆OD) are usually detected:

which can be written using the approximation (2) as

If ∆OD ≈ 0.1, the difference between the exact expression
(3) and the approximation (4) is below 0.5%, so we can use the
linear approximation. To apply this result in the detection of
femtosecond kinetic traces, let us consider two pulses as shown
in Figure 1.

When exciting with the pulseIe(t) and measuring the temporal
evolution of absorption with the pulseI m

0(τ - t′), which arrives

into the reaction mixture after a delay ofτ, then we can detect
at t′ for the reaction initiated at timet the instantaneous
absorption response

or, substituting the linear approximation into the expression for
∆OD in eqs (3) and (4),

However, asI m
0(τ - t′) is time dependent, the quantity

ln10εcl is detected with time-dependent “weights”. Let us
introduce Im(τ - t′) as I m

0(τ - t′) divided by its integral
between-∞ and +∞. Obviously, the functionIm(τ - t′) has
the following property:

and can be considered as the detection probability density
function at timet′. Using this function, we can write the integral
of ∆OD detected for the excitation at timet as

We emphasize again thatIm(τ - t′) is no more the detected
intensity of the probe pulse prior to excitation but the detection
probability density. (As the intensity cancels in eq (6), its
absolute value is not needed in further calculations.) Similarly,
if Ie(t) denotes the probability density function derived from
the absolute intensity of the pump pulse normalized to unit
integral, the total concentration present at timet′ generated by
the entire exciting (pump) pulse can be written as

Redefining the functionc(t′ - t ) so thatc(t′ - t) ) 0 for all
t > t′ (this is the usual kinetic definition; the concentration
change is zero for negative reaction times), we can write eq (9)
in a form that is more common in probability theory:

This expression can more easily be treated in mathematical
terms as well, as the integral obtained combining eqs (8) and
(10),

is easy to be written as a convolution. TheconVolution of the
functionsf andg is defined14 as

The correlation of the functionsg andh can be written14 as

Figure 1. Notation used to describe the convolution integral detected
in femtosecond pump-probe kinetic measurements.Ie(t) is the pump
(“exciting”) pulse andIm(τ - t′) is the probe (“measuring”) pulse
intensity profile.

I ) I0 × 10-εcl ) I0 e-ln 10εcl (1)

I ≈ I0(1 - ln10εcl) (2)

∆OD )
I0 - I

I0
) 1 - 10-εcl (3)

∆OD ≈ 1 - (1 - ln10εcl) ) ln10εcl (4)

I inst(τ,t,t′) ) I m
0 (τ - t′) × 10-εc(t,t′)l (5)

∆ODinst(τ,t,t′) )

I m
0 (τ - t′) - I m

0 (τ - t′)(1 - ln10εc(t,t′)l)

I m
0 (τ - t′)

) ln10εc(t,t′)l

(6)

∫-∞

∞
Im(τ - t′) dt′ ) 1 (7)

∆OD(τ,t) ) ln 10∫-∞

∞
Im(τ - t′)εc(t′ - t)l dt′ (8)

c(t′) ) ∫-∞

t′
Ie(t) c(t′ - t) dt (9)

c(t′) ) ∫-∞

∞
Ie(t) c(t′ - t) dt (10)

∆OD(τ) ) ln 10∫-∞

∞
Im(τ - t′)∫-∞

∞
Ie(t)ε c(t′ - t)l dt dt′

(11)

f X g ) ∫-∞

∞
f(t) g(τ - t) dt (12)

corr(g,h) ) ∫-∞

∞
g(τ + t) h(t) dt (13)
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This latter can also be written as a convolution integral if we
useg̃(τ - t), the functiong(τ + t) with its inverted time scale:

If there are more than one transient species absorbing at the
probe wavelength, we should sum the contributions of all then
absorbing species writing∑k)1

n
εkckl in place ofεcl. Making use

of the fact that the order of integration is immaterial (or of the
commutability and associability of convolution) we can write

The first function on the right side can be considered as an
“effective pulse” which in practice also includes a time
broadening due to the difference of the refractive indices at the
pump and the probe wavelengths, also called group velocity
mismatch.

Summarizing the above results we can state that the detected
integrated differential optical density is the convolution of the
effective pulse with the instantaneous transient differential
optical density ln 10∑k)1

n
εkckl.15 This result is obtained for

transientabsorptionmeasurements. However, iffluorescence
emissionis measured, the intensity of the detected signal is
proportional to the probe or gate beam intensityIm, which excites
the fluorescing species or creates the sum frequency. Conse-
quently, the same formalism applies, except for a proportionality
constant.

Let us reformulate eq (15) in terms of the usual notation of
imaging. Thus,∆OD(τ) is called theimage function i(t), the
effective pulse is thespread function s(t), and the instantaneous
response function is theobject function o(t). It is this latter we
want to infer from the measured data. The above convolution
can then be rewritten as

Deconvolution Methods

The information on the kinetic and photophysical behavior
in a femtochemical experiment is contained in the undistorted
functiono(t). To get this function from the detected (convolved)
signal i(t), the spread functions(t) should be known and the
integral eq (16) should be solved. This procedure yielding the
originalo(t) function is called deconvolution. Equation (16) can
also be used to determine the effective pulses(t). This procedure
is called identification, but it is not the subject of this paper.
Moreover, as there are methods that enable direct experimental
detection ofs(t) even for multiphoton excitation experiments,16

identification is not of great importance in femtochemistry.
There exist different groups of deconvolution methods used

in treating laser photolysis data. The first widely used group
can be calledreconVolution. Least-squares iterative reconvo-
lution is the most widely used version.6,11Strictly speaking, this
is not a deconvolution, but a least-squares fitting of a suitable
model function convolved with the effective pulse to the
measured (convolved)i(t) data, thus estimating kinetic and
photophysical parameters. Once the parameters are known, the
(nonconvolved)o(t) function can also be reconstructed. Some-
what similar is the method of moments (another parameter
estimation method), which only works for multiexponential
decay models, being inferior to the least-squares method that
can treat any kinetic model. Other iterative methods based on

either Laplace or Fourier transforms work also only for
multiexponential decay models. The method of modulating
functions is an elegant, noniterative method, which provides
the parameters of multiexponential decay by solving integral
equations. There are only two methods leading primarily to a
deconvolved dataseto(t) which have been used in laser
photolysis. One is the so-called exponential series method. It is
based on the assumption that laser photolysis measurements can
be interpreted as the sum of a few exponentials. This method
does not suppose that the sum of exponentials would have any
physical meaning. Accordingly, time constants are fixed when
using this method, and a least-squares estimation of the
amplitudes is performed so that the convolution of the expo-
nential series with the effective pulse matches the measured
(convolved)i(t) function. The nonconvolved series then repre-
sents the nonconvolvedo(t) function. The other direct decon-
volution method is based on inverse filtering using Fourier
transforms, with special noise handling derived from the
Poissonian error of the data and an exponential extrapolation
of the dataset. All the aforementioned methods and the relevant
original papers are described in the references.6,7

We can summarize that none of the above methods are
completely free of (usually arbitrary) models, most of them
requiring a multiexponential decay of the species formed by
excitation with the pump pulse. However, femtochemical
processes, especially in condensed media, are usually more
complicated and cannot be described as simple sums of
exponential functions. Iterative least squares is always a
reasonable choice, if we have a priori knowledge of a reaction
mechanism and related photodynamic properties. Unfortunately,
in most of the cases, we do not have it. Therefore, it would be
useful to be able to directly deconvolve the measuredi(t)
function. The deconvolvedo(t) may be more instructive for the
chemist to find out possible mechanisms, and testing the
mechanisms would need much less computation without the
convolution involved in the model function. In addition, if a
reliable deconvolution can be obtained, the additional uncertainty
of the model parameters due to the correlation with the effective
pulse parameters, always present in an iterative reconvolution
procedure, could be avoided. (Though the functional form of
the effective pulse can be measured, its exact width and “zero
time” should usually be fine-tuned when evaluating ultrafast
kinetic data.)

The aim of this paper is to discussdirect, model-free(and
hencenonparametric) deconvolution methods, so we do not deal
further with those mentioned above. In a direct deconvolution,
the solution of the convolution eq (16) provides a reconstructed
ô(t) dataset from the measuredi(t) data so that

Many direct deconvolution methods are described in the
comprehensive monograph edited by Jansson.17 Other useful
reviews are the invited paper of Schafer et al.,18 or a more recent
tutorial paper on several advanced methods in the field of image
reconstruction.19

Before describing particular methods that we have used
successfully to deconvolve femtochemical data, we would like
to point out some major difficulties in the reconstruction of the
undistorted functiono(t). One of the problems is that of the
uniqueness of solution of the integral eq (16). Suppose that the
solution ô(t) is not unique in the sense that we can find other
solutions of the form

corr(g,h) ) ∫-∞

∞
g(τ + t) h(t) dt ) ∫-∞

∞
g̃(τ - t) h(t) dt )

g̃ X h (14)

∆OD(τ) ) [corr(Im,Ie)] X (ln 10∑
k)1

n

εkckl) (15)

i ) s X o (16)

i ) s X ô (17)

ô(t) ) o(t) + w(t) (18)
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where w(t) is the part ofô(t) which makes the originalo(t)
become a spurious function. If there exist some functionsw(t)
that fulfill the condition

or, in other words, whose convolution with the spread function
s(t) is zero, thenw(t) can be summed with the real object
functiono(t) to give a valid solutionô(t). As we shall see later,
spurious components in the solutionô(t) often appear.

Another problem is encountered due to experimental errors
in the form of noise which adds to the “true” value of the
measuredi(t) function, so that

The problem of noise is also a severe limitation on the
solution of the convolution equation. For details see the
discussion of eqs (26) and (27).

(a) Linear Deconvolution Methods.A deconvolution method
is called linear if it includes only linear operations on the input
datai(t) ands(t). Though linear methods are not really effective
to deconvolve femtosecond kinetic data, it is worth treating them
as they offer an easy formal description of the deconvolution
problem. In practice, kinetic measurements provide sampled
quantized data of thei(t) function, i.e., a finite set of data
truncated numerically to some decimal digits. To describe these
data, we can rewrite the convolution eq (16) in discrete form:

where the limits ofm comprise the entire range wheres has a
nonzero value. The values ofn are those for which measured
data are available. We can rewrite this equation in matrix
formulation:

where i ando are column vectors ofN elements, andS is an
N × N square matrix. In practice,N is usually the length of the
in dataset, as the length of nonzero elements of thesn-m data is
less thanN. The elements of theSmatrix aresn,m ) sn-m within
the range of the spread function, and zero outside. From the
time-independent shift property of thes function we can find
out that theS matrix should have a special property; each row
is the same as the row above, except that it is (circularly) shifted
one element to the right. Such a matrix is called a Toeplitz
matrix.

Obviously, eq (22) represents a set of linear equations with
the unknownsom, and we should be able to obtain the solution
by simply inverting the matrixS. However, the special structure
of the Toeplitz matrix makes the solution extremely sensitive
even to slight numerical imprecision, as its rows are almost
identical. When calculating the inverse, very small differences
of large numbers should be handled. Even if the inverse can be
calculated with robust iterative methods, the solutionô obtained
contains large spurious fluctuations as a consequence of the
experimental noise in thei vector.

Iterative solutions of eq (22) are promising to suppress the
spurious fluctuations and noise amplification, as they could be
controlled during the iterative process. Iteration is a recurrent
approximation of the solution that can be written as

whereô(k+1) is the next approximation with respect toô(k) and
λ is called therelaxation factor. In a linear iteration method,λ
should be independent ofi, s, ô(k), andt. In the “classical” van
Cittert method,λ ) 1, and the first approximationô(0) ) i.1 As
the iteration proceeds, the correction term becomes smaller, and
convergency to the true objecto can be achieved. However,
van Cittert’s method also amplifies noise with each iteration
step and leads to ever increasing spurious fluctuations in the
solutionô, similarly to other linear methods, thus never leading
to convergency. We shall show nonlinear iterations in the next
section that efficiently treat this problem.

There is another obvious possibility to treat deconvolution,
namely, digital filtering. AnonrecursiVe digital filter is defined
by a convolution similar to eq (21).4 Accordingly, we can say
that the measured functioni is obtained by digitally filtering
the objecto with the spread functions. The procedure of getting
back the object is calledinVerse filtering, which is more
convenient to treat in the frequency domain, using the Fourier
transformsF(ν) of the respective time domain functionsf(t).

According to the convolution theorem,3,4 eq (16) that
describes the distortion can be written in the frequency domain
as

where ν is the frequency (per unit time).3 Obviously, as
convolution (i.e., digital filtering) becomes simple multiplication
in the frequency domain, we can readily get the inverse filtered
result

where 1/S(ν) is the searched-for inverse filter. The procedure
of inverse filtering to get the objecto is in principle straight-
forward. We should Fourier transform both the measured image
function i and the spread functions, divide the transform of
the first with that of the second, and inverse Fourier transform
the resultO(ν) to geto(t): in principle, but not in practice. As
the reader might have noticed, inverse filtering as described here
is also a linear transformation of the measuredi function, so
we can expect the usual spurious fluctuations and noise
amplification in the solutionô. As we shall see later, these
fluctuations become many orders of magnitude larger than the
functiono itself. This is due to the fact that the slowly varying
spread function has nonzero components only close toν ) 0,
so applying the inverse filtering according to eq (25) means
dividing at higher frequencies virtually by zero, largely amplify-
ing the high-frequency noise.

However, digital filtering in the frequency domain makes it
easy both to describe and to treat the effect of noise. We can
rewrite eq (20) as

Inverse filtering ofI(ν) then becomes

As the measured optical density in kinetics is usually a slowly
varying function (even more so after convolution with the
effective pulse), it has nonzero values mostly close to zero
frequency. The noise content of the measured data typically has
high-frequency components as well, which means that the high-
frequency part of the solutionÔ(ν) is dominated by the noise.

∫-∞

∞
s(τ - t) w(t) dt ) 0 (19)

i(t) ) i true(t) + n(t) (20)

in ) ∑
m

sn-mom (21)

i ) So (22)

ôn
(k+1) ) ôn

(k) + λ(in - ∑
m

sn-môm
(k)) (23)

I(ν) ) S(ν) O(ν) (24)

O(ν) ) 1
S(ν)

I(ν) (25)

I(ν) ) Itrue(ν) + N(ν) (26)

Ô(ν) )
Itrue(ν)

S(ν)
+

N(ν)

S(ν)
(27)
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Division of the nonzeroN(ν) values at higher frequencies by
S(ν)swhere this latter has virtually zero values, as mentioned
beforesfurther enhances the noise content ofÔ(ν). This is the
origin of the discouraging result of simple inverse filtering, that
the amplitude of noise in the inverse Fourier transformô(t)
largely exceeds the amplitude of the signal itself.

Analysis of eq (27) also offers the clue to get rid of the
amplified noise. All we have to do, at least in principle, is to
“cut” the high frequencies ofÔ(ν) before inverse transformation
so that we get rid of the amplified noise, but keep the low-
frequency part that contains the information necessary to
reconstructô(t) the most closely resembling the true object. If
such a low-pass filter is a linear filter only, the overall procedure
is still a linear transformation. The success of getting rid of the
noise this way depends on the extent of overlapping of the
Itrue(ν) and theN(ν) functions. If nonzero amplitudes of the two
functions occur in distinct frequency regions, noise filtering can
be very efficient. If the two regions overlap, there is a trade-off
between noise reduction and object distortion. In this case,
additional noise filtering can be used simultaneously with inverse
filtering. Filter parameters are then optimized to get the optimal
deconvolution result.

Effective noise filtering can also be done in the time domain
in some form of “smoothing” the experimentalin dataset prior
to deconvolution. This can be done with a wide variety of
filters,3,4,17 but they should be applied with caution, as they
typically distort the true object function as well. A safe method
that works well without distortion is the so-calledreblurring
procedure proposed by Kawata et. al.20,21In this procedure, both
spread and image are convolved with the inverted time-scale
spread functions(-t). Following this, the starting image will
be the correlations(-t) X i(t), and the spread function used in
the deconvolution will be the autocorrelations(-t) X s(t). The
noise in the measuredi(t) is largely reduced by this smoothing,
resulting also in an effective damping of the spurious fluctua-
tions in the solutionô(t), but the number of iterations necessary
to obtain convergency is much higher after reblurring. To
overcome this problem, a variable convergence speed method
has also been proposed.22 However, the increased computational
requirement does not lead to inconvenience nowadays, due to
recently available high-speed processors.

(b) Constrained Nonlinear Deconvolution Methods.Ap-
pearance of spurious components and noise amplification can
easily result in complete failure of the reconstruction of the
object function, or in its heavy distortion. We can greatly
improve the result of reconstruction if we make use of our prior
knowledge of the object function. If we know the functional
form except for a few parameters, a least-squares estimate of
those parameters with the help of the convolved function usually
results in a completely smooth function. Even if we do not know
the kinetic model function, when measuring physical signals,
we usually know some useful properties of the measured
functions a priori, which properties can easily be implemented
in iterative procedures. To include constraints and nonlinearity
in the iteration eq (23), we can write17,18

whereC is a constraint operator, andλ may be dependent oni,
ô, or t. In femtosecond kinetic applications, we can use several
constraints. As already mentioned in connection with eqs (9)
and (10), a transient∆OD should be zero prior to excitation. If
nonzero elements of the object function are confined withint1
andt2, it is called afinite extent17 or finite support18 constraint.

In the case of a transient∆OD, we may use asemifinite support
constraint, which means that we always setô(k)(t) values to zero
if t < t1, the onset time of excitation in the instantaneous kinetic
response. However, if we do not know the exact zero delay
between the pump and the probe pulses, application of this
constraint might not be useful. ThepositiVity constraintis also
applicable if there is no bleaching present in the measured∆OD,
or if we measure a transient fluorescence signal. This constraint
forces the amplitude of theô(t) function to remain always non-
negative.

Constraints on amplitude may be implemented also in the
relaxation factorλ. An elegant and rather effective formulation
is the relaxation proposed by Jansson.23 His version of the
nonlinear iterative method in a discrete implementation can be
written as

The relaxation functionr(ô(k)) is defined to respect the (a priori
known) boundaries of the object function. Ifômin is the minimum
and ômax is the maximum of the physically acceptable values,
then a general expression for the relaxation function can be given
as

(Note that the original formula of Jansson17 is different; it is
valid only if ômin equals zero andômax is positive, while eq (30)
does not require these conditions.) This function is trigonally
shaped, with its maximumr0 in the middle of the interval (ômin;
ômax), decreasing linearly with the distance from the maximum.
It has zero values (no correction) at the boundaries, and becomes
negative outside the physically acceptable interval. Its effect
during the iterative procedure is to apply a negative correction
if the amplification of noise resulted in physically nonacceptable
data. Physical boundaries are often easy to fix, especially in
spectroscopy. Transmittance data, for example, should lie
between 0 and 1. The method is clearly superior to simple
“clipping” at the boundaries. This can easily be shown at the
zero limit. If we simply clip negative values to zero, according
to eq (28), they should remain zero during further iteration, while
the more flexible Jansson algorithm allows subsequent relaxation
from zero values.

Another group of iterative methods uses multiplicative
corrections instead of additive ones. The method has been first
proposed by Gold.24 The iteration equation can be written as

If both sandi are positive,ô(k) cannot become negative during
this iteration. Obviously, the multiplicative correction term
i/(s X ô(k)) goes to unity if convergency is obtained. It is
interesting to note that Gold’s ratio method can be considered
as Jansson’s method using the special relaxation function
r[ô(k)] ) ô(k)/(sX ô(k)).25 Note that, in addition to the dependence
on the value ofô(k) in the Jansson method, this relaxation
function also depends on the iteration numberk. Another
interesting and efficient multiplicative correction has been
developed inspired by the Bayesian method of probability

ô(k+1) ) Cô(k) + λ(i - s X C ô(k)) (28)

ôn
(k+1) ) ôn

(k) + r(ô(k))[in - ∑
m

sn-môm
(k)] (29)

r(o(k)) ) r0 -
2r0

ômax - ômin
|ô(k) -

ômin + ômax

2 | (30)

ôn
(k+1) ) ôn

(k)
in

∑
m

sn-môm
(k)

(31)
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calculation,26 hence it is usually called Bayesian deconvolution.27

(Note that some authors also call it as Richardson-Lucy
method.) This iteration procedure can be written as

In fact, this is an enhanced noise suppression method, where
the simple Gold’s correction term is filtered with the reverse
time-scale spread functions(-t), though the number of iterations
increases substantially. This iteration also guarantees the
conservation of positive values. There is also a direct use of
the Bayesian estimation method in deconvolution if the object
function can be interpreted as a probability distribution, which
is typically not the case in femtochemistry.

A quantitative comparison of time domain iterative decon-
volution methods used in spectrometry and chromatography has
found Jansson’s method the best performing one.28 There is an
interesting study on the application of nonparametric deconvo-
lution methods to differential calorimetric results at a scale of
a few seconds.29 This kinetically motivated work concludes that
constrained iterative methods with subsequent noise filtering
give the most suitable results.

As we have already pointed out, the application of noise
filtering in addition to inverse filtering may also provide
nonlinear corrections of the digital filtering results. To filter
single photon counting measurements, a Fourier-spectrum
continuation has been developed taking into account errors form
a Poissonian distribution.30 Another method is based on an
evenly distributed error (white noise) in the entire frequency
domain and uses an adaptive Wiener filter.31,32Adaptive filtering
is a promising field to harness inverse filtering to get reasonably
noiseless deconvolved ultrafast kinetic datasets without spurious
fluctuations. Regularization is another possibility to “force” the
inverse filtered object function to have some prescribed proper-
ties.33,34

It is worth mentioning a comparative study of six different
deconvolution techniques by Madden et al.,35 where the reader
can find a numerical analysis of some specific methods used to
deconvolve pharmacokinetic drug response functions. However,
these methods apply either an implicit model function (e.g.,
cubic splines) or an interpolation of the original experimental
data to a substantially increased grid size compared to the
number of measured points. Though there are several distinct
curve shapes considered, all of them are periodical starting from
and ending at zero values. Consequently, results of this study
do not have a great relevance to the deconvolution of ultrafast
laser kinetics data.

Numerical Tests of the Implemented Deconvolution
Methods

After having tried several deconvolution procedures, we have
chosen to thoroughly test the applicability of those that could
be successfully used in the deconvolution of femtosecond kinetic
data. For the test purposes, we have used synthetic data,
calculated on the basis of the simple consecutive mechanism

with the initial conditions [A]) 1 mol/dm3, [B] ) [C] ) 0 at
t ) 0. The resulting kinetic response function is given in eq

(16) of ref 9. We have calculated three different kinetic curves
(representing three detection wavelengths with differentε values
of the individual species). The time series of∆OD values
obtained this way were convolved with a 255 fs fwhm Gaussian
spread function and sampled at 30 fs intervals. To mimic
experimental error, a random number was added to each sampled
value, generated with a normal distribution. The mean of the
distribution was set at zero and its variance at 2% of the
maximum of the convolved data set, which is equivalent to an
RMS error of-34 dB. The resulting raw data can be seen in
Figure 1 of ref 10. They were used as the inputi1, i2, and i3

with each deconvolution method, along with the error-free
spread function sampled at the same time intervals.

Iterative model-free deconvolution methods were imple-
mented as given above. TheVan Cittert linear iteratiVe method
has been tested only for comparison to see the degree of
improvement when switching from a linear to a nonlinear
iteration. As zeroth approximation we usedôn

(0) ) in, the
convolved (image) data set.IteratiVe Bayesian deconVolution
is computationally more demanding due to the double convolu-
tion included in each iteration step. As this method is sensitive
to zero or near-zero values in the initial data setin, a “baseline
correction” is needed if there is bleaching present or if
experimental noise results in negative values of thein set. This
can be done by adding a positive constanta to in so that (in +
a) > 0 for all n. Once the Bayesian deconvolution is done, the
same constant can be subtracted from the resultingôn data.
Obviously, this treatment introduces some distortion of decon-
volution results.Jansson’s methodhas been used with the
relaxation function given in eq (30), where there is a need for
the minimum and maximum of the true solutionon, which is
not easy to know prior to deconvolution. Even in the case of
no bleaching or fluorescence detection, only the zero minimum
is known, not the maximum. To get the extrema of the true
object function, we made a Bayesian deconvolution where you
do not need those two parameters, then started a new Jansson
deconvolution using the upper and lower boundary limits thus
obtained.Gold’s ratio method should certainly provide more
noisy results than the Bayesian method that has an additional
smoothing in each iteration step. It was included in the present
study to show exactly this improvement when the computa-
tionally more demanding Bayesian method is used.

InVerse filteringmethods are based on Fourier and inverse
Fourier transforms. Though the popular FFT method is also
appropriate to use when calculating forward or inverse trans-
forms, we usually get better results with the direct discrete
Fourier transform (DFT) and its inverse transform if the number
of dataN does not match exactly a power of 2. This is probably
due to the fact that padding the dataset with zeros (or other
arbitrary values) toN ) 2k when using FFT usually results in
a distortion of the transform. With recent computers, DFT
calculations up to a few hundred data can be carried out within
reasonable time. Implementing the DFT algorithm, we applied
no normalization in the forward, and a normalization byN (the
length of the data set) in the inverse transformation, as given
in eqs (5) and (6) in ref 10.

As we have pointed out before, simple inverse filtering
enormously amplifies high-frequency noise, so this method
cannot be applied without effectively filtering out this noise.
We have tried four different filtering methods. One was
prefiltering the i(t) dataset using the reblurring procedure
described above. Another method was the use of a simple low-
pass filter, i.e., cutting the Fourier transformÔ above a threshold
frequencyfo prior to inverse transformation. Neither of these

ôn
(k+1) ) ôn

(k)∑
m

sn+m( in

∑
m

sn-môm
(k)) (32)

A 98
τ1

B 98
τ2

C (33)
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filters gave satisfactory results. AWiener filter is more
sophisticated, which minimizes the sum of squared differences
between the original functionf and the inverse Fourier transform
of F̂, denoted byf̂. As the originalf function is not known,
approximations for the optimal Wiener filter are usually used.
A critical study of different formulations of the Wiener filter
and their applicability to radioactive indicator-dilution data is
described by Bates.32 In the case of a white noise, where the
noise amplitude is the same constantN at each frequency, the
Wiener filter can be implemented in the following approximated
form:9,31

This filter, called adaptiVe pseudo-Wiener filter, has been
successfully used to deconvolve radioactive indicator-dilution
response curves by Gobbel and Fike.31 Finally, we also tried
the two-parameter regularization filterproposed by Dabo´czi
and Kollár.34 Its simpler versions with only one additive constant
in the denominator (the equivalent ofλ) are widely used, as
was proposed, e.g., by Parruck et al.36 Implementation of this
filter was similar to that of the Wiener filter; the inverse filtered
result was multiplied by this filter, giving the Fourier transform
of the object as

Here,

is the square of the absolute value of the Fourier transform of
the second-order backward differential operator,S* means the
complex conjugate of the frequency-domain functionS, andνs

is the sampling frequency, which can be calculated from the
equidistant sampling time∆t as 1/∆t. This filtering avoids
division by zero where|S|2 becomes practically zero, with the
addition of the constantλ and the frequency-dependent correc-
tion γ|L|2 to the denominator. Regularization has been applied
to isothermal DSC data by Pananakis and Abel,29 using the
equivalent of eq (35) withγ ) 0, i.e., a one-parameter only
regularization filter.

It is interesting to compare the last two filters. For a better
comparison, let us multiply both the numerator and denominator
of eq (34) byS*/|I|2 to get

Comparing eqs (35) and (37) we see that singularities in both
filters are avoided by additional terms to|S|2 in the denominator,
thus providing regularization of the deconvolution. In this
respect, Wiener filtering can also be considered as a special
case of regularization. However, the three different additive
terms have different “side effects” in addition to avoiding
singularities. The constantλ smoothes also the signal itself, thus
reducing eventual experimental noise independently of the
frequency. The role of the term|N|2 / |I|2 in the Wiener filter is

also to reduce experimental noise, but the effect of the constant
error power|N|2 is modified when divided by the frequency-
dependent image power|I|2. The smaller the power of the image
(i.e., the higher the frequency), the greater the smoothing effect
as well, in addition to the regularizing effect. The termγ|L|2 in
the regularization filter is similar in that its smoothing effect
increases with increasing frequency, but in this case indepen-
dently of the image power.

There is an additional problem with the Fourier transformation
of femtosecond kinetic data: many measured datasets are
nonperiodic, as can be seen from Figures 2, 4, and 7. This
nonperiodic nature makes the Fourier transforms have virtual
high-frequency components, as the difference from zero at the
end of the data sets means a discontinuity in a circular
transformation, which generates high-frequency components
characteristic of steplike functions. These extra frequencies
further increase spurious fluctuations in the deconvolved result,
so they should be treated prior to deconvolution. There are
methods described in the literature to avoid this problem in
different ways. We have used the method proposed by Gans
and Nahman37 by subtracting the shifted data from the original
dataset to give a strictly periodic, finite support sequence. This
results in a well-behaved Fourier transform, but provides twice
the number of data in the frequency domain. However, due to
double sampling of the time-domain data, every other item in
the frequency-domain dataset is zero, which can be omitted if
we plot an amplitude spectrum. As a result, we get the discrete
Fourier transform of the unmodified dataset but without the high-
frequency components that would appear if not performing the
transformation to a periodic sequence. It should be noted that
other proposed methods to treat steplike functions prior to
Fourier transformation are equivalent to the Gans-Nahman
method.38

The object functionsôn obtained with each deconvolution
method mentioned above were analyzed the following way.
Using the least-squares iterative parameter estimation of Mar-
quardt39 for all three datasets simultaneously, the parameters
of the model function and their standard deviations were
determined. On the basis of these values, the 95% confidence
interval was calculated for each parameter.11 Confidence
intervals calculated this way were compared to the least-squares
iterative reconvolution results obtained from thei(t) data with
the convolved model function. As the reconvolution procedure
contained all information except for the parameters concerning
the object function during deconvolution, parameters obtained
this way represent the best available estimates. In addition,
various overall statistics and Fourier transform properties were
also calculated. Fourier transforms can help to check the noise
content of the measured data and follow the extent of noise
reduction during deconvolution. To this end, we show some
amplitude spectra in the frequency domain of the measured and
restored datasets.

As for testing purposes we use synthetic data, so we are in a
position to calculate the mean square error (MSE) of the
deconvolution for the object function defined as

We also calculate a similar statistics using the sum of squares
of differences between the reconvolved results and the original

Ô ) |I|2

|I|2 + |N|2
|S|2

I
1
S

(34)

Ô ) IS*

|S|2 + λ + γ|L|2
(35)

|L(ν)|2 ) 16 sin4(πν
νs

) (36)

Ô ) IS*

|S|2 + |N|2
|I|2

(37)

MSEobject) x∑
m)i

N

(ôm - om)2

N - 1
(38)
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image function defined as

This latter can be calculated also in case of a measuredim
dataset, when we do not know the true object function. Another
indication of the quality of the deconvolved dataom is the
oscillation index proposed by Gobbel and Fike.9,31 This index
shows the extra oscillation with respect to a smooth unimodal
function increasing monotonically fromô1 to ôpeak, and decreas-
ing monotonically fromôpeak to ôN.

(a) Test Results. When testing iterative methods, we
monitored the mean-square errors MSEobject and MSEimageand
the oscillation index OSC and fitted the model function to the
deconvolved curves after each iteration step. The minimum of
the mean-square errors or the minimal residual error in the fit
was considered as an optimum for the deconvolution. When
using the van Cittert or Gold methods, after a slight decrease
during two to four steps, there was a monotonic increase of the
errors indicating an ever increasing noise in the deconvolved
data sets, while there were marked minima in the case of the
Jansson and the Bayesian methods of MSEobjectand the residual
error in the fit. Though the two minima usually did not coincide,
they did not differ much either. (As an example, it was at 58
iteration steps for MSEobject and 63 steps for the residual error
in the fit when deconvolving the functioni2 using the Bayesian
method. Cf. Figure 3.) However, there was not any minimum
in either the MSEimageerror or the oscillation index OSC during
iteration with any methods that would have provided reasonable
deconvolved data. In some cases, there appeared extrema in
OSC but the minima never indicated reasonable deconvolution
results either, and occurred prior to the optimal iteration number
found based on the MSEobject or residual fit. Fitted parameters
from the Bayes-deconvolved data set were quite reliable, while
those from the Jansson-deconvolved data set usually had too
large errors.

When deconvolving reblurred data sets, there were always
minima for the MSEobject and the residual error in the fit, and
results obtained for fitted parameters were comparable in case
of all the methods. Both OSC and MSEimage have shown a
monotonic change with iteration number, so they cannot be used
as optimum criteria. Considering all the parameters, it was also
the Bayesian method which gave the best result. Table 1A)

summarizes parameters thus obtained from the fit. As can be
seen from the table, the best-performing method is Bayesian
iteration of the reblurred image data.

To show the quality of deconvolution, two examples can be
seen in Figure 2. Figure 3 shows the existence of optima during
the iterative procedure. The oscillation index OSC of the
deconvolved data increased monotonically (not shown in Figure
3), due to the monotonically increasing amplified noise.

Testing inverse filtering methods, we have used a similar
optimization strategy as with time-domain iterative methods.
The only difference was that, in this case, OSC, MSEobject,
MSEimage, and the residual error in the fit were monitored as a
function of the filter parameter(s). According to our results,
preliminary noise filtering using reblurring does not help to
eliminate the enormous noise amplification during the inverse
filtering procedure if we do not apply additional filters. Though
the simple low-pass filter helps reducing this noise to a large
degree, it still introduces relatively large spurious fluctuations
in the obtained deconvolved data set while still heavily distorting
the deconvolved signal shape. The Wiener filter and regulariza-
tion result in acceptable deconvolved data sets, so we explored
in detail only the use of these additional filters. The relevant
parameter for the Wiener filter (eq (34)) is the noise power|N|2,
while for the regularization filter, there are two parameters,γ
andλ.

Before searching for optima in the two-parameter space, we
have used first a one-dimensional search also for the regulariza-
tion filter, setting eitherγ or λ to zero. The upper limits of a

Figure 2. Datasets obtained with optimal Bayesian deconvolution from the simulated measured data (image)i2. (a) Deconvolution of the original
image. (b) Deconvolution of the reblurred image. Circles are the results of the deconvolution. The continuous curves show the image, and short-
dashed curves indicate the original (noise-free) object function, while the long-dashed curve in panel b shows the reblurred image. Note the noise-
reducing effect of the reblurring procedure.

MSEimage) x∑
m)1

N

[(ô X s)m - im]2

N - 1
(39)

Figure 3. Different optimum criteria as a function of the number of
iterations for a Bayesian deconvolution of the originali2 dataset. Arrows
with iteration numbers indicate the corresponding minima. Note the
monotonic decrease of MSEimage with the iteration number.
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subsequent 100× 100 division two-dimensional grid search
were set to be somewhat higher as the optimal values obtained
in one-parameter optimizations, while the lower limits were set
to zero. For the test functions studied here, we have found an
interesting result: in all of the two-parameter optimizations, one
of the parameters was found to be zero at the optimum.
Obviously, the other parameter was equal to the value obtained
from the one-parameter optimization, so the two-parameter
regularization can be reduced to one-parameter regularization
in the case of the studied model functions. In the case of function
i1, two-parameter optimization was found at nonzeroλ param-
eter, withγ ) 0, while with the functionsi2 andi3 we have got
the same optimalγ value as in the case of the one-parameter
γ-optimization, with λ ) 0. Consequently, only test results
obtained from one-parameter optimizations are given in Table
1B. Since the more demanding two-parameter regularization did
not provide better results with respect to the one-parameter
regularization, there is probably no need to use it in the case of
image functions similar to those tested here.

Tracing the results of the grid search, there were marked
minima of MSEobjectand the residual error in the fit, which gave
only slightly different optimal values. However, there was not
any minimum in either the MSEimage error or the oscillation
index during the optimization with any methods. After a sharp
initial decrease, the OSC curve shows a very shallow but
monotonic decrease with increasing filter parameter (cf. Figures
2 and 3 of ref 9.), while the MSEimageerror constantly increases.

It is interesting to follow the Fourier transforms of different
data sets during the optimization procedure. When applying only

the simple inverse filter with no additional noise filtering (i.e.,
γ, λ, or |N|2 parameters are set to zero), after a moderate initial
amplification of the signal at low frequencies, the experimental
noise becomes gradually more and more overamplified so that
high frequencies at the end of the spectrum have typically
several thousand times greater amplitudes than in the original
undistorted signal. (Obviously, this leads to a time domain data
set with several orders of magnitude higher noise than the signal
itself.) As the relevant filter parameters are increased, this high-
frequency noise is gradually damped by the additional filter,
while the low-frequency amplification remains practically the
same. The optimal filter parameter is that which effectively
damps the high-frequency noise with no important distortion
of the low-frequency part, this latter containing most of the
information of the useful time-domain signal. To demonstrate
this effect of the additional noise filter, we show a few spectra
at optimal noise filter parameters.

In Figure 4b, we can see the frequency characteristics of
different filters resulting in the deconvolved time-domain signals
shown in panel a. At about 2.5 THz, the Wiener filter has a
sharp cutoff that reaches its highest value of about 20 thousand
time damping at about 4.5 THz (apart from fluctuations), which
remains more or less constant till the end of the spectrum at
about 16 THz. Bothγ andλ regularization filters have less sharp
and higher frequency cutoff characteristics; however, the
frequency-dependentγ-filter has a steeper breakdown than the
frequency-independentλ-filter, so it gradually catches up with
the Wiener filter curve to cut somewhat more from about 4 THz.
From here on, the damping of the Wiener filter is oscillating

TABLE 1: Estimated Parameters Obtained When Fitting Model Function (33) to the Three Simulated Datasets Deconvolved
Using Different Deconvolution Methods and the Residual Error in the Fit as Optimum Criteriona

(A) Iterative Deconvolution in Time Domain

parameters
true

value Bayesian
Bayesian
reblurred

van Cittert
reblurred

Gold
reblurred

Jansson
reblurred

τ1 0.20 0.19 (0.02) 0.19 (0.02) 0.22 (0.04) 0.20 (0.03) 0.20 (0.03)
τ1 0.50 0.49 (0.04) 0.50 (0.04) 0.46 (0.06) 0.48 (0.04) 0.49 (0.04)
εA

1 30 28.9 (1.4) 29.4 (1.3) 26.4 (1.5) 28.0 (1.4) 28.0 (1.4)

εB
1 20 19.6 (1.3) 19.2 (1.2) 20.1 (1.7) 19.7 (1.4) 19.8 (1.4)

εA
2 5 3.5 (1.6) 3.5 (1.5) 5.0 (1.8) 4.0 (1.5) 3.2 (1.6)

εB
2 45 45.7 (2.7) 45.2 (2.5) 47.9 (4.5) 46.5 (3.1) 45.9 (2.9)

εC
2 10 10.0 (0.3) 10.0 (0.3) 10.1 (0.3) 10.1 (0.3) 10.0 (0.3)

εA
3 5 4.2 (1.4) 4.2 (1.4) 4.8 (1.6) 4.5 (1.4) 5.2 (1.5)

εB
3 30 30.5 (2.1) 30.2 (1.9) 32.1 (3.3) 31.1 (2.3) 30.1 (2.2)

εC
3 -10 -9.9 (0.3) -9.9 (0.3) -9.8 (0.4) -9.8 (0.3) -9.9 (0.3)

(B) Inverse Filtering in Frequency Domain

regularization

parameters
true

value
Wiener
filter optimizedγ optimizedλ

τ1 0.20 0.22 (0.04) 0.23 (0.04) 0.24 (0.05)
τ2 0.50 0.45 (0.06) 0.45 (0.06) 0.44 (0.07)
εA

1 30 26.5 (1.5) 26.2 (1.5) 25.7 (1.5)

εB
1 20 20.1 (1.7) 20.2 (1.7) 20.1 (1.8)

εA
2 5 4.9 (1.8) 5.0 (1.8) 5.2 (1.7)

εB
2 45 48.0 (4.6) 48.3 (4.8) 48.0 (5.4)

εC
2 10 10.1 (0.3) 10.1 (0.3) 9.9 (0.3)

εA
3 5 4.7 (1.7) 4.8 (1.6) 4.8 (1.6)

εB
3 30 32.1 (3.4) 32.4 (3.5) 32.2 (3.9)

εC
3 -10 -9.8 (0.4) -9.8 (0.4) -9.6 (0.4)

a Characteristic timesτ1 andτ2 are given in ps units, while molar absorptivitiesεi
λ are given in dm3 mol-1 cm-1. Numbers in italics indicate a

systematic error in estimation. Bold nonitalic numbers are the best estimates. Bold italics indicate the best estimate but with a systematic error.
Headings indicate the actual deconvolution method. Numbers in parentheses show the half-widths of 95% confidence intervals. Note thatεC

1 was
set to zero and not treated as a fitted parameter.
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between that of theλ-filter and that of theγ-filter, depending
on the actual noise of the measured data. Summing up we may
say that the Wiener filter reduces the low-frequency noise more
efficiently, and its damping at higher frequencies seems to
“imitate” an optimum between theλ- and theγ-filter, depending
on the experimental noise level. This behavior of the frequency
spectra is quite similar for the deconvolution results of the other
two data setsi1 and i2.

Model parameters obtained when estimating from the inverse
filtered deconvolved data sets are shown in Table 1B. It can be
seen that the errors of the characteristic times are greater than
those obtained from the Bayesian iteration results, but many
absorptivity parameter errors are comparable to those obtained
from iterative results. The overall performance of the Wiener
filter is the best, though there is not much difference between
regularization filtered and Wiener filtered results in the time
domain, as it is expected from the above considerations of the
frequency spectra.

The frequency-domain behavior suggests a similar analysis
of the time-domain iteration results as well. As an example, in
Figure 5 we show amplitude spectra of the Bayesian deconvo-
lution results obtained from the image functioni2 (cf. Figure 2
to see corresponding time-domain results). It is worth noting
the minimal suppression of the high frequencies in panel a, in
the case of the Bayesian deconvolution of the original (nonre-

blurred) image data. Obviously, the slight overamplification
between 3 and 4 THz is responsible for the minor extra
oscillation at the end of the deconvolved curve in Figure 2a,
but the reason for keeping the experimental noise of the image
in the deconvolved data set is also this very small noise
suppression. In panel b of Figure 5 we see an important cut
starting at∼3 THz and increasing down to more than a 100
times damping of the high frequencies. This frequency behavior
is responsible for the efficient filtering of the experimental noise
in the resulting time-domain data set (cf. Figure 2b).

Frequency characteristics of the van Cittert, Gold, and Jansson
iterative deconvolution results show that the high-frequency
damping effect is substantially less if using these methods than
with the Bayesian deconvolution. It is not surprising that the
Jansson method works well in spectroscopy and chromatogra-
phy; it enhances efficiently the high-frequency components as
the iteration proceeds, thus efficiently increasing even small
peaks. However, most of the femtosecond kinetic data do not
contain several small peaks, rather one shallower “bump”, so
the gradual amplification of smaller features by the Jansson
method is not desirable in this case, but it is responsible for the
greater errors obtained for parameters estimated from the
Jansson-deconvolved data. Even so, Jansson deconvolution can
be useful if there is a need for a steep initial rise but also for an
efficient suppression of too high a peak resulting from this rise,

Figure 4. (a) Deconvolved data sets obtained with different inverse filters from the simulated measured data set (image)i3. Open circles show the
results obtained with optimized regularization filters (λ- and γ-filtered results [atλ ) 0.0179 andγ ) 0.244, respectively] are not discernible
visually at this scale). Smaller filled circles show the results obtained with an optimal Wiener filter [at|N|2 ) 1.24× 10 -5]. The continuous curve
shows the image, and the short-dashed curve indicates the original (noise-free) object function. (b) Amplitude spectra of the deconvolved data sets
in panel a. Circles show spectra of the deconvolved data sets, each one marked with the corresponding filter name. The top thin solid curve shows,
for comparison, the spectrum of the simple inverse filtered result without any noise removal.

Figure 5. Amplitude spectra of the deconvolved data sets obtained with Bayesian deconvolution from the simulated measured data seti2 (see time
domain results in Figure 2). (a) Deconvolution of the original image. (b) Deconvolution of the reblurred image. Circles show spectra of the deconvolved
data sets, dotted curves indicate the original (noise-free) object function, and short-dashed curves indicate the measured signal, while the long-
dashed curve in panel b shows the spectrum of the reblurred image. The top thin solid curve shows, for comparison, the spectrum of the simple
inverse filtered result without any noise removal. Note the noise-reducing effect of the reblurring procedure.
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as this method efficiently avoids a rise above the prescribed
maximum. Reshaping the original triangular relaxation function
can also help to get more suitable deconvolution results with
the Jansson method (see e.g. figure 8).

(b) Recommendations.On the basis of the test results
described above, we can derive some principles to be followed
when trying to deconvolve femtosecond kinetic data without
any chemical and/or photophysical model. To help the com-
parison of different methods, we visualize in Figure 6 some
results obtained with different deconvolution methods tested,
showing estimated parameter values (central dots) and their
relative errors (bars) as 95% confidence intervals in percentage
of the respective estimated values. The top bar is the result
obtained from reconvolution, i.e., when fitting the known model
function (33), convolved with the known effective pulse, to the
image data. This result represents the best available estimate
of the parameters, as the fitting procedure makes use of the
complete knowledge of the true model, except for the actual
values of its parameters. The vertical lines in the diagrams
indicate zero error, i.e., no systematic distortion of the parameter.
From the data shown in Figure 6, we can easily see the statistical
precision of the estimated parameters (bar size), and the
systematic distortion (relative position of the dots and the bars
with respect to the zero line).

A striking feature of the diagrams is that several methods,
mostly time-domain iterations of the reblurred data sets, provide
less systematic error than reconvolution. This is due to the fact

that a nonparametric deconvolution results in a deconvolved
data set obtained independently from the kinetic/photophysical
model, thus the “fine-tuning” of the pulse parameters (zero time
and exact width) does not correlate with the model parameters.
Bayesian deconvolution of the reblurred data gives the most
remarkable results in this respect; parameters obtained from
these data are always much less distorted than those from the
reconvolved results. It should also be noted that the statistical
error is of course greater (about twice as large) with respect to
the reconvolution results, but this is normal as the information
content of the true model is not used at all when deconvolving
without any model. However, the systematic error of the
estimated value (the distance of the central dot from zero) is
often less than that of the reconvolved result, and never really
greater. Bayes deconvolution (both of the original and the
reblurred image) gives a nondistorted result even for the most
distorted parameterεA

1 , where all other methods fail, including
reconvolution.

On the basis of these findings we can recommend a
nonparametric deconvolution and subsequent parameter estima-
tion from fitting the model function to the deconvolved data
set even in the case if the model function is known from other
experimental evidence than the ultrafast kinetic measurements
used to determine kinetic and photophysical parameters. Though
statistical errors can be up to twice as much as estimated with
a reconvolution procedure, markedly smaller systematic distor-

Figure 6. Upper two panels: 95% confidence intervals in percentage relative to the parameter value (relative errors) for the two time constants
τ1 andτ2 in eq (33) obtained from a global fit to three deconvolved data sets resulting from different deconvolution methods. Methods are identified
by the text written aside the corresponding error bars. The top bar in each frame marked “reconvolved” was obtained with a reconvolution procedure,
representing the estimate obtained using the proper model function. Lower two panels: Relative errors for two molar absorptivity coefficients.εA

1

(reactant) was obtained with the greatest, whileεB
3 (transient) with the smallest systematic error.
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tions can be expected with this method. If we are not certain of
a physical model a priori and want to select the most suitable
one based on the evaluation of the femtosecond kinetic data,
nonparametric deconvolution efficiently helps to avoid unneces-
sary correlation of the fine-tuned pulse parameters with the
model parameters, thus facilitating the choice between concur-
rent models.

Another interesting feature is that the results obtained with a
Wiener noise filter are always very much the same as those
obtained with the van Cittert iteration of the reblurred data. Both
the van Cittert and the inverse filtering methods are linear
deconvolution methods, so the explanation should be that
reblurring in the time domain has probably the same noise-
reducing properties as a Wiener filter in the frequency domain.
Observing the respective error bars, we can also state that the
Wiener filter has somewhat less systematic distortion than the
regularization filters. This observation supports thatsif there
is apparently no “fine structure” present in the measured data
but it contains rather a simple “bump”sa Wiener noise filter is
the method of choice if inverse filtering is used for deconvo-
lution. However, if there are also smaller peaklike features to
be suspected in the deconvolved curve, regularization, especially
frequency-independentλ-regularization, might be a better choice,
even if it provides somewhat larger statistical errors in the
parameters.10

A similar recommendation can be formulated for the time-
domain iterative methods. Bayesian deconvolution has by far
the best statistical properties from the point of view of both a
small systematic distortion and a narrow confidence interval
due to the efficient smoothing effect of this method. However,
if smaller peaks or a less smooth behavior with very steep a
rise at early times are suspected, Jansson deconvolution of the
reblurred image might give more satisfactory results. Van Cittert
and Gold iterative methods do not have any advantages with
respect to the above-mentioned two iterative methods, so their
use in practical applications is not recommended. It should be
noted that Bayesian deconvolution can only be applied to a non-
negative dataset, so the baseline-correction mentioned in
describing the numerical implementation should be always used
if necessary. Varying the baseline correction used, we have
observed that the smallest distortion occurs if the smallest
possible baseline correction is applied.

A few words should be added also on the optimization
procedure if the methods are applied to real experimental data.
In this case not only the model, but also the original, undistorted
data set is unknown. While it is easy to use statistics derived
from the undistorted signal to find optimal iteration numbers
or filter parameters, when only the convolved image function
measured in an experiment is known, there are no statistics
available which would indicate optimal deconvolution. As we
have shown in the previous chapter, both MSEimage and the
oscillation index OSC have a monotonic behavior as a function
of the relevant filter parameters. Though the existence of an
optimum is well established on the basis of the results found
for the case of known object functions, which certainly holds
for experimental data of similar shape, there is no numerical
optimum criterion if the true model function is unknown.
However, on the basis of the frequency-domain characteristics
of different data sets compared to the deconvolved data, a fairly
good estimate of the optimal deconvolution can be chosen. As
it can be seen in Figures 4 and 5, optimally deconvolved data
have a frequency spectrum whose amplitude never turns from
a decreasing tendency into an increase. This is supported by
the figures showing deconvolution results of synthetic data, as

we can also plot the Fourier spectrum of the known undistorted
function o. Whenever the amplitude of the deconvolved
spectrum exceeds that of the monotonically decreasing undis-
torted functiono, the excess amplitude only enhances noise in
the deconvolved data set. On the basis of this fact we should
check for the onset of increasing noise tendency even if the
undistorted functiono cannot be seen on the spectra, and stop
the iteration or the decrease of the filter parameter (see Figure
3). Properties of this graphically observed optimum are discussed
in more detail in ref 10.

A computer program is also available as Supporting Informa-
tion to this paper which facilitates graphical deconvolution via
inverse filtering. It shows both time-domain and frequency-
domain behavior of the relevant functions while changing filter
parameters. The effect of choosing a Fourier transform method
in the case of steplike functions can also be observed using the
program.

Deconvolution of Real-Life Experimental Data

Real experimental data might differ much from those
calculated on the basis of the simple two-step model used to
test the applicability of deconvolution procedures. We have
chosen a considerably complex phenomenon, the CTTS (charge
transfer to the solvent) of the sodide ion Na- observed in THF
(tetrahydrofurane) solution to deconvolve with the above-
described nonparametric methods. The original data along with
a reconvolution analysis using a quite sophisticated model is
described at length in a previous paper.40 Figure 7 shows the
three experimental curves chosen here to deconvolve, all
normalized to unit amplitude between their highest and lowest
values. The choice of three substantially different shapes makes
it possible to estimate the parameters of the reported kinetic
model, consequently, a comparison of the quality of inference
from nonparametric deconvolution with respect to reconvolution.
(Note that we have kept the parameters of the shifting spectrum
of the neutral Na0 species, formed when the electron gets
detached from the Na- ion, as published in ref 40, for measured
data at three wavelengths only are not sufficient to estimate
them with a reasonable precision.)

We performed iterative Bayesian and Jansson deconvolution,
and inverse filtering with additional Wiener or regularization
noise filtering on all three curves. In addition to the near-optimal
deconvolutions found using the above-described graphical
observation of the noise behavior, we checked slightly under-

Figure 7. Experimental ultrafast kinetic curves deconvolved in this
study, as measured by Barthel et al.40 Excitation/detection wavelengths
shown identify individual curves. Circles denote measured data, and
solid lines represent the best fit of the model as estimated by
reconvolution from these three data sets. All data are normalized to
unit amplitude between their highest and lowest values.
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filtered and slightly overfiltered results as well, to see the quality
of the chosen optima. This checking of the results was done by
fitting the reported model function simultaneously to the three
deconvolved data sets and comparing the statistics of the
parameters estimated from the fit. We have used the Marquardt
method of nonlinear estimation,39 similarly to the case of
simulated data.

It was found in each case that the underfiltered (when
performing time-domain iterative deconvolution, this corre-
sponds to the case of too high iteration numbers) as well as the
overfiltered object reconstructions gave statistical results inferior
to those found optimal based on the graphical observation of
the frequency-domain behavior. This is in accordance with the
findings reported in ref 10 that graphical observation is a robust
method of optimal deconvolution. Underfiltered data sets
resulted in considerably larger errors of the parameters, while
overfiltered data sets had usually worse statistics indicating
systematic error in the fit.

However, there were differences in this case with respect to
the simulated data. As it can be seen in Figure 8, Bayesian
deconvolution results in a reconstructed object function that
obviously does not have a steep enough initial rise. We have
found that, with a suitable “shaping” of the relaxation function
using Jansson deconvolution, we can achieve a more satisfactory
result than with the Bayesian method. The relevant relaxation
function of Figure 8 has a double quadrangular shape. We can
see that there is no amplification (zero relaxation factor) at
exactly zero signal amplitude, but it increases very sharply to
become 0.86 already at∆OD ) 0.3, resulting in a largely
increasing amplification above but close to zero. This amplifica-
tion should gradually decrease to fall off to a negligible size
between 7 and 8.6, at the region of the fluctuating constant value
of the residual absorbance, as this fluctuation should rather be
suppressed, but by no means largely amplified. (The original
trigonally shaped Jansson relaxation function would have a near
maximal value exactly in this region, thus increasing the
fluctuation in an undesired way.) Above the constant residual
absorbance, especially near the peak of the curve, the decon-
volved function should have an enhanced peak, so that the
relaxation function should become again very large. Shaping
the relaxation function this way, we have achieved a really steep
rise after a smooth zero signal level, without the overshooting
of the Bayesian deconvolution result, as it can be seen from
the comparison in panel a of Figure 8. In panel b we can see
the corresponding frequency spectra showing that the Jansson
deconvolution results in a lower amplification than the Bayesian

method in the low-frequency domain, avoiding unnecessary slow
fluctuations as well as overshooting at the relatively shallow
peak. At the same time, it allows higher amplitude at higher
frequencies, thus providing the necessary steep rise at early
times.

Inverse filtering also provides quite reliable results compared
to that of the Bayesian or Jansson deconvolution. The quality
of deconvolution with inverse filtering can be seen in Figure 4
of ref 10. Though the results obtained with a Wiener filter are
the best in statistical terms,γ-regularization is not much inferior.
As in the case of the synthetic data set (see Figure 4 here, and
Figures 2 and 3 of ref 10), inverse filtered curves also contain
a low-frequency oscillation around the initial zero∆OD, but
knowing that this oscillation is an artifact, we may only keep
the monotonically rising part of the initial portion of the curve.
However, this initial oscillation enables a considerably steeper
rise than the flat initial part in the case of a Bayesian
deconvolution. This is the reason for obtaining better results
for the parameters than in the case of a Bayesian deconvolution,
even if reblurring is applied.

Deconvolved data sets obtained using different methods,
resulting in the best fit with the model function published in
ref 40, are shown in Figure 9. Parameters obtained from the
fits are shown in Table 2. To facilitate the comparison, Figure
10 shows four parameters obtained with different deconvolution

Figure 8. Experimental ultrafast kinetic curves detected at 1150 nm, deconvolved with a Bayesian and a Jansson method of the reblurred data set.
The double quadrangular shape of the relaxation function used with the Jansson method (long dashed gray curve) is also shown in panel a. Amplitude
spectra of the respective curves are shown in panel b.

Figure 9. Deconvolved experimental data. Excitation/detection wave-
lengths shown identify individual curves (cf. Figure 7). Circles denote
measured data; solid lines represent deconvolved data sets obtained
with Jansson time-domain iterative deconvolution using relaxation
functions similar to that of Figure 8. All data are normalized to unit
amplitude between their highest and lowest values.
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methods, in a similar manner as the test results of the synthetic
data in Figure 6. From this comparison and the data of Table 2
we can see that four of the seven parameters,τ1, P490, P615 and
A490/590, obtained from a fit of the model function to the
deconvolved data sets are practically identical with those
obtained from reconvolution (the corresponding confidence
intervals overlap), but there is a systematic deviation in the case
of the remaining three parametersτ2, P585, andA585/490. Whether
it is a systematic error introduced by the nonparametric
deconvolution, or a systematic distortion of the parameters
obtained from reconvolution which is absent in those obtained
from the deconvolved data, we cannot unquestionably decide.
Anyway, on the basis of the evidence seen with simulated data,
we have quite good confidence in believing that nonparametric
deconvolution resulted in a smaller systematic distortion than
in the case of parameter estimation from the reconvolution. It
is also interesting to note that errors estimated from the
deconvolved data are not that much different from those
obtained from reconvolution; typically 20-50% higher only.
Moreover, some spectrophysical parameters have a smaller
uncertainty due to an efficient smoothing of the experimental
error.

It should be added, however, that the parameters estimated
from the three curves selected are certainly not as statistically
accurate as the parameters inferred simultaneously from 22
curves in ref 40, so this study does not really challenge the
parameters reported in the original paper; rather it calls attention
to the fact that, here again, nonparametric deconvolution might
lead to a less distorted estimated parameter set.

A few curves detected between 1200 and 1400 nm show a
small peaklike bump at very short time delays. This rather fast

rise and immediate fast decay are not interpreted by the kinetic
and photophysical model of ref 40 quantitatively; it is only
supposed that this feature appears due to early time absorption
and a subsequent fast decay to a weak excited-state absorption
that shifts rapidly to the red via solvation. (See also Figure 3a,c
of ref 41, where the transient peak is more sharp due to the
greater time resolution.) Using a nonparametric deconvolution
method, we can nevertheless reconstruct an estimate of the
original, undistorted kinetic curve to check the height of this
initial feature. It turns out that a considerably large peak can be
reconstructed using a simple Bayesian deconvolution of the
reblurred data. As it can be seen from Figure 11, the peak is
enhanced by a factor of more than 5 due to deconvolution only.
This result shows that nonparametric deconvolution allows a
much deeper insight into the nature of kinetics and/or photo-
physics of the femtochemical process even in a case when no
detailed inference from the raw data can be obtained.

The case of 780/1250 nm data shown in Figure 11 reveals
another interesting feature. The measured data set does not have
a unimodal shape, but there are a very sharp and a rather flat
peak involved. Accordingly, the Fourier transform of this curve
should show a distinct high-amplitude region at some higher
frequencies as well, in addition to the typical low-frequency
behavior peaking at zero frequency. Obviously, the strategy of
graphical optimization described above for a relatively flat
unimodal function cannot be applied in this case. It should be
modified so that after an initial decrease there should be an
increase of the amplitude, and the usual monotonic decrease
should be achieved following this increase. This feature,
relatively rare among measured femtosecond kinetic traces,
shows that one should be cautious to choose the applied strategy

TABLE 2: Estimated Parameters Obtained When Fitting the Model Function of Ref 40 to the Three Experimental Datasets
Deconvolved Using Different Deconvolution Methodsa

parameters reconvolution Bayesian
Bayesian
reblurred

Jansson
reblurred

Wiener
filtered

regularized
filtered (γ)

τ1 0.79 (0.06) 0.78 (0.09) 0.75 (0.10) 0.76 (0.10) 0.76 (0.10) 0.77 (0.10)
τ2 0.53 (0.05) 0.33 (0.05) 0.35 (0.06) 0.38 (0.06) 0.38 (0.07) 0.36 (0.06)
P585 0.80 (0.01) 0.91 (0.01) 0.91 (0.02) 0.90 (0.02) 0.89 (0.02) 0.90 (0.02)
P490 0.55 (0.09) 0.64 (0.13) 0.58 (0.17) 0.58 (0.15) 0.56 (0.18) 0.59 (0.16)
P615 0.77 (0.02) 0.84 (0.03) 0.82 (0.03) 0.81 (0.03) 0.82 (0.04) 0.82 (0.03)
A585/490 15.4 (1.2) 27.5 (0.5) 27.3 (0.6) 26.3 (0.7) 26.1 (0.8) 26.3 (0.7)
A490/590 70.8 (5.1) 62.3 (5.8) 64.8 (7.8) 64.8 (7.2) 65.0 (8.0) 63.9 (7.1)

a Characteristic timesτ1 andτ2 are given in ps units, while molar absorptivitiesApump/probeare given in dm3 mol-1 cm-1. ParametersPpump stand
for the branching ratios of electron detachment to form an immediatesrather then solvent separatedsion pair at the respective wavelength of the
applied pump pulse. Headings indicate the actual deconvolution method. Numbers in parentheses show the half-widths of 95% confidence intervals.
Bold numbers are the best estimates. Numbers in italics indicate a systematic difference from the corresponding reconvolved results. Bold italics
indicate the best estimate but with a systematic difference.

Figure 10. 95% confidence intervals in percentage relative to the reconvolved parameter value for the two time constantsτ1 and τ2 and two
transient Na-* absorbancesA585/490andA490/590of the model function described in ref 40 from a global fit to the three deconvolved experimental
curves for data sets obtained with different deconvolution methods.
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for a graphical optimization with actual measured data sets. A
careful investigation of the Fourier transform of the measured
function usually offers the guide for a proper optimization
procedure. In this example, it is clear from the frequency
spectrum marked “not filtered” in panel b that the onset of the
undesirable noise amplification appears only after the slight
increase in amplitude responsible for the initial sharp peak.

Conclusion

We have thoroughly examined the possibility of model-free
deconvolution of femtosecond kinetic data using adaptations
of iterative methods in the time domain and inverse filtering in
the frequency domain with additional noise filters. We have
found that the two major problems to solve are experimental
noise and the steplike shape of many kinetic traces.

The steplike signal shape results in a fairly distorted Fourier
transform, as the cyclic transformation introduces a sudden drop
or rise in the data set, which leads to the appearance of virtual
high-frequency components. The method of Gans and Nahman37

suggested in the signal processing literature avoids this problem
by doubling the data set in a way that results in a periodic
function without the sudden change. To treat the consequences
of experimental noise which renders the solution of the
convolution equation largely unstable, we have found powerful
additional noise filters. In the time domain, the procedure called
reblurring20,21 turned out to be a sufficient noise pretreatment
to avoid the spurious behavior of the deconvolved data set during
iterative deconvolution. This treatment consists of the convolu-
tion of both the measured signal and the effective pulse with
the time-inverted pulse, and the subsequent deconvolution of
the smoothed signal using the reblurred pulse, which is its
autocorrelation. In the frequency domain, this pretreatment does
not help, as inverse filtering is highly sensitive even to very
small numerical noise. The solution in this case is a composite
filter, i.e., the simultaneous application of a suitable noise filter
with the inverse filter. Adaptive Wiener filtering31,32 and
regularization33,34,36 gave satisfactory results in efficiently
reducing the noise while leading only to a very small distortion
of the useful signal.

A thorough analysis of the numerical implementation of the
above-mentioned methods with simulated synthetic data revealed
the existence of optimal deconvolution to reconstruct the original
undistorted data, and the good quality of the results as a basis
of a statistical inference to get reliable parameters of the
underlying physical models. It has also been found that model

parameters obtained this way were less biased than those
obtained with a classical reconvolution, i.e., inferring parameters
from fitting measured data to the convolved model functions.
However, we were unable to find any target functions that could
be used to quantitatively indicate optimal filter parameters or
iterative results in the case of experimental data when the true
signal is not known. To treat this problem, we have developed
a graphical method based on the observation of the frequency-
domain behavior of the Fourier transforms of the deconvolution
result, the measured data set and that of the simple inverse
filtered result without any noise filtering. We have found that
the visual observation of these curves provides rather robust
deconvolution results. If a frequency sensitive deconvolution
is needed, inverse filtering can be an appropriate choice. In the
case if the efficiency of the deconvolution should be different
depending on the amplitude, the time-domain iterative Jansson
method with a suitably shaped relaxation function offers the
best possibility.

We have also tested all the methods that could be used to
deconvolve synthetic data sets to the deconvolution of real-life
experimental data.40 It turned out that there can appear some
new features of the measured data which were not appertaining
to the synthetic data studied, but adaptation of the findings with
the synthetic data are quite straightforward based on the actual
shape of the experimental kinetic traces. In the case of an
unresolved experimental data set, where the rather fast feature
involved has no explanation yet, the model-free deconvolution
has revealed a substantially different signal shape from that of
the detected data.

We continue our efforts to find some more heuristic decon-
volution methods, as for example the genetic algorithm that
would enable the use of quantitative criteria to find an optimal
deconvolved data set even if the original undistorted signal is
unknown. It should also be mentioned that deconvolution
methods implemented and analyzed can have a more wide
application range than femtosecond chemistry. Whenever
relatively slowly varying steplike functions are measured
distorted by convolution, all the methods described here might
be worth trying.
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Figure 11. Dotted line: Experimental ultrafast kinetic curve at 780 nm excitation and 1250 nm detection wavelength (ref 40, Figure 3, panel K).
Solid line: Deconvolved curve obtained with a Bayesian iterative method of the reblurred data, using 350 fs fwhm spread function. Panel a shows
the time-domain data, while panel b shows the corresponding Fourier transforms in the frequency domain along with the solid line (marked “not
filtered”) showing the inverse filtered amplitude spectrum without additional noise filtering.
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Supporting Information Available: A Visual Basic 6.0
program for inverse filtering of femtosecond kinetic data with
a graphical interface, accompanied with a few examples of data
(both simulated and experimental). This material is available
free of charge via the Internet at http://pubs.acs.org.
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