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Efficient model-free deconvolution of
measured femtosecond kinetic data
using a genetic algorithm
Ernő Keszeia*
J. Chemom
Due to the uncertainty relation between the temporal and spectral widths of a laser pulse, sufficient selectivity in
excitation and detection energy does not allow much shorter pulses in a femtosecond pump-probe experiment than
about 100 fs. Many ultrafast chemical processes have comparable characteristic times, so the results of these
experiments are severely distorted by convolution of the kinetic response function with the pulses used. If we do
not know the underlying photochemical and kinetic model, the only way to overcome the limitation in time resolution
due to convolution is to perform a model-free deconvolution. Most existing deconvolution methods—even after
specifically adapted to femtochemical experimental data (Bányász Á, Keszei E. Nonparametric deconvolution of
femtosecond kinetic data. J. Phys. Chem. A 2006; 110: 6192–6207)—do not provide a smooth deconvolved data set
that could be used for unbiased statistical inference. Here, we report an efficient model-free deconvolution method
that enhances temporal resolution and improves statistical inference from measured pump-probe data, using a
genetic algorithm (GA). The proposed algorithm enables to create a fairly good initial population and uses highly
efficient population dynamics to result in individuals who represent excellent solutions of the deconvolution problem
without noise amplification, even in the case of a sharp initial steplike rise of the signal. The treatments of both
synthetic and experimental data are supporting the outstanding applicability of the proposed deconvolutionmethod.
Copyright � 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Chemical applications of deconvolution started in the early
thirties of the 20th century to sharpen convolved experimental
spectral lines [1]. With the development of chromatography,
deconvolution methods have also been used essentially for the
same purpose, to get a better resolution of components [2–3].
The need for deconvolution also emerged in the evaluation of
pulse radiolysis, flash photolysis and later laser photolysis results,
when studied kinetic processes were so fast that reaction times
were comparable to the temporal width of the pulse or lamp
signals (see e.g. Reference [4]). However, the aim of deconvolu-
tion in these kinetic applications was not a sharpening of the
signal, but the exact reconstruction of a distortion-free kinetic
response function. A number of methods have been used ever
since to get the deconvolved kinetic signals in different
applications [5–8]. With the availability of ultrafast pulsed lasers,
femtochemistry has been developed [9–11], where the time
resolution enables the very detection of the transition state in an
elementary reaction. Due to several limiting factors, applied laser
pulses have typically a temporal with which is comparable to the
characteristic time of many interesting elementary reactions. As a
consequence, convolution of the measured kinetic signal with
the laser pulses used is an inevitable source of signal distortion in
most femtochemical experiments.
In previous publications [12–14], we have dealt with several

classical methods of deconvolution either based on inverse
filtering via Fourier transformation, or on different iterative
procedures. Methods reported in these papers resulted in a quite
etrics 2009; 23: 188–196 Copyright � 2009 J
good quality of deconvolution, but a sufficiently low level of noise
in the deconvolved data could only have been achieved if some
smoothing was also used, which in turn introduced a small bias
due to the lack of high frequency components as a consequence
of additional smoothing. Though this phenomenon is quite
common when using classical deconvolution methods, it makes
subsequent statistical inference also biased. As it has been stated,
an appropriate use of ad hoc corrections based on the actual
experimental data can largely improve the quality of the
deconvolved data set by diminishing the bias. This experience
led us to explore the promising group of genetic algorithms
(GAs), where the wide range of variability of operators enables
specific ‘shaping’ of deconvolution results.
In this paper we describe the application of a modified GA that

we successfully use for nonparametric deconvolution of
femtosecond kinetic traces. Though GAs are not widely used
for deconvolution purposes yet, they are rather promising
candidates to be usedmore frequently in the near future. The few
applications in the literature include image processing [15–17],
ohn Wiley & Sons, Ltd.
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spectroscopy [18,19], chromatography [20–23] and pharmacoki-
netics [24].
The rest of the paper is organised as follows. In the next

section, we briefly explain the details of the procedure of
ultrafast laser kinetic measurements leading to the detected
convolved kinetic traces. In Section 3 we outline the mathemat-
ical background of nonparametric deconvolution and summarise
previous results and their shortcomings in the deconvolution of
transient kinetic signals. In Section 4 we describe the
implementation of the GA used. Section 5 gives details of
results obtained deconvolving simulated and experimental
femtochemical data, followed by a summary in Section 6.
1

2. CONVOLUTION OF THE DETECTED
FEMTOSECOND PUMP-PROBE SIGNALS

A detailed description of the most typical kinetic experiment in
femtochemistry—the pump-probe method—can be found in a
previous publication [14]. Here we only give a brief formulation of
the detected transient signal. The pump pulse excites the sample
proportional to its intensity Ig(t) at a given time t. As a
consequence, the instantaneous kinetic response c(t) of the
sample will become the convolution

cgðtÞ ¼
Z1

�1

cðxÞIgðt � xÞdx � c � Ig (1)

where x is a dummy variable of time dimension. The pump pulse
is followed after a delay t—controlled by a variable optical path
difference between the two pulses—by the probe pulse
I0mðt þ tÞ, which is normalised so that for any t

Z1

�1

I0mðt þ tÞdt ¼ 1 (2)

if there is no excitation by the pump pulse prior to the probe
pulse. The intensity of the probe pulse diminishes while
propagating within the excited sample according to Beer’s
law

Imðt þ tÞ ¼ I0mðt þ tÞe�AcgðtÞ (3)

where A¼ e l ln10, e being the decadic molar absorptivity of the
species that has been formed due to the pump pulse, and l is the
path length in the sample. If the exponent Acg(t) is close to zero,
the exponential can be replaced by its first-order Taylor
polynomial 1 – Acg(t), with a maximum error of (Acg(t))

2/2. The
detector—whose electronics is slow compared to the sub-
picosecond pulse width—measures a signal which is pro-
portional to the time-integral of the pulse, so the detected
reference signal (before excitation) is

S0 ¼ K

Z1

�1

I0mðt þ tÞdt ¼ K (4)
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while after excitation, it is

S ¼ K

Z1

�1

Imðt þ tÞdt � K

Z1

�1

I0mðt þ tÞ½1� AcgðtÞ�dt (5)

The output of the measurement is the so-called differential
optical density, which makes the proportionality constant K
cancel:

DODðtÞ ¼ S0 � S

S0
�

Z1

�1

I0mðt þ tÞAcgðtÞdt (6)

Let us substitute cg(t) from Equation (1) into the above
expression:

DODðtÞ � A

Z1

�1

I0mðt þ tÞ
Z1

�1

cðxÞIgðt � xÞdx

2
4

3
5dt (7)

Rearranging and changing the order of integration, we get

DODðtÞ � A

Z1

�1

cðxÞ
Z1

�1

I0mðt þ tÞIgðt � xÞdt

2
4

3
5dx (8)

Let us rewrite this equation by inverting the time axis of both
the pump and the probe pulses according to

~Igð�tÞ ¼ IgðtÞ and ~I0mð�t þ tÞ ¼ I0mðt þ tÞ (9)

which corresponds physically to change the direction of time
without changing the direction of the delay. Substituting these
functions into Equation (8), we get

DODðtÞ � A

Z1

�1

cðxÞ
Z1

�1

~I0mð�t þ tÞ~Igðx � tÞdt

2
4

3
5dx (10)

Introducing variable y ¼ x � t, this can be written as

DODðtÞ � A

Z1

�1

cðxÞ
Z1

�1

~I0mðy þ t � xÞ~IgðyÞdy

2
4

3
5dx (11)

As the correlation of two functions f and g can be written as

corr ½f ; g�ðtÞ �
Z1

�1

f ðx þ tÞgðxÞdx (12)

we can rewrite Equation (11) in the form

DODðtÞ � A

Z1

�1

cðxÞcorr ~I0m;
~Ig

� �
ðt � xÞdx (13)

which is a convolution:

DODðtÞ � corr ~I0m;
~Ig

� �
� ðc"l ln 10Þ (14)

In this latter expression, the correlation of the inverted time
axis pump and probe functions is the same as the correlation of
the original pump and probe (usually called as the effective pulse
ons, Ltd. www.interscience.wiley.com/journal/cem

8
9



E. Keszei

1
9
0

or instrument response function, IRF), while the transient kinetic
function to be determined is (elln10)c. If there are more than one
transient species formed due to the excitation absorbing at the
probe wavelength, we should sum the contributions of all the n
absorbing species writing

Pn
k¼1 "k l ck in place of e lc. In case of

fluorescence detection, the fluorescence signal is proportional
either to the absorbed probe pulse intensity that reexcites the
transient species, or to the gating pulse intensity. As a result, the
only difference to Equation (14) is the appearance of a
proportionality constant.
Introducing the notation of image processing, let us denote the

IRF as the spread s, and the transient kinetic function the object o.
The image i is the detected (distorted) differential optical density.
Hereafter we use the equation equivalent to Equation (14) in the
form

i ¼ o� s (15)

which represents the integral equation

iðtÞ ¼
Z1

�1

oðtÞsðt � tÞdt (16)

to describe the detected transient signal.
Many elementary reactions are typically complete within a

picosecond, while the effective pulse often has a width
comparable to the characteristic time of the reaction. This is
due to the uncertainty relation which sets a limit to the temporal
width of the pulse if we prescribe its spectral width [25]. The
narrow spectral width is necessary for a selective excitation and
detection of the chosen species. The usual spectral width of
about 5 nm in the visible range corresponds to about 100 fs
transform limited (minimal) pulse width. As a consequence,
sub-picosecond kinetic traces are usually heavily distorted by the
convolution described above. That’s why it is necessary to
deconvolve most of the femtochemical transient signals while
performing a kinetic interpretation of the observed data.
3. DECONVOLUTION OF TRANSIENT
SIGNALS

In an actual measurement, a discretised data set im is registered
with some experimental error. (Even if there weren’t for these
errors, numerical truncation by the A/D converter would result in
rounding errors.) To get the undistorted kinetic data set om, we
should know the spread function s or the discretised sm data set
and solve the integral Equation (16). The problem with solving it
is that it has an infinite number of (mostly spurious) solutions,
from which we should find the physically acceptable unique
undistorted data set. Existing deconvolution methods typically
treat strictly periodic data (whose final datum is the same as the
first one), and give at least slightly biased deconvolved result due
to the necessary damping of high frequency oscillations that
occur during deconvolution [14,26]. A widely used method to
circumvent ambiguities of deconvolution is to use the convolved
model function to fit the experimental image data, thereby
estimating the parameters of the photophysical and kinetic
model; which is called reconvolution. Apart from the fact that
many reactive systems are too much complicated to have an
established kinetic model (e.g. proteins or DNA), the inevitable
correlation between pulse parameters and kinetic parameters
www.interscience.wiley.com/journal/cem Copyright � 2009 John
also introduces some bias in the estimation, which can be
avoided using nonparametric deconvolution prior to parameter
estimation.
In a previous publication [14] we thoroughly investigated

several classical deconvolution methods used in signal proces-
sing, image processing, spectroscopy, chromatography and
chemical kinetics. We have successfully applied inverse filtering
methods (based on Fourier transforms) using additional filters
and avoiding the problem of non-periodicity of data sets, and also
iterative methods to deconvolve femtosecond kinetic data.
Synthetic data sets were analysed and parameters of the model
function obtained from estimation using the deconvolved data
were compared to the known parameters. Comparing estimated
parameters to those obtained by reconvolution—where the
information provided by the knowledge of the true model
function was used during the virtual deconvolution—it turned
out that there was a smaller bias present in the parameters
obtained after model-free deconvolution than in the reconvolu-
tion estimates. This supports that a model-free deconvolution
followed by fitting the knownmodel function to the deconvolved
data set effectively diminishes the bias in most estimated
parameters. The reason for this is that using reconvolution, there
is a need for an additional parameter, the ‘zero time’ of the
effective pulse, which increases the number of degrees of
freedom in the statistical inference and introduces additional
correlations within the estimated parameters, thus enabling an
extra bias.
Despite of the mentioned qualities of model-free deconvolu-

tion, there was always an inevitable bias present in the
deconvolved data set due to the necessary noise-damping,
which resulted in an amplification of low-frequency components
in the signal. Optimal results were obtained by a trade-off
between noise suppression and low-frequency distortion.
Improvement could be made to diminish this bias by using ad
hoc corrections which made use of specific properties of actual
image functions, using appropriate constraints in the deconvolu-
tion. This suggested to try GAs for model-free deconvolution. GAs
are very much flexible with respect to the use of genetic
operators that could treat many specific features of different
transient shapes.
4. DECONVOLUTION USING GENETIC
ALGORITHMS

The idea of using GAs for mathematical purposes came from
population genetics and breeding sciences. It has been first used
and thoroughly investigated by Holland [27], and slowly gained a
wide variety of different applications, also in the field of
optimisation. There are comprehensive printed monographs
[28,29] as well as easy-to-read short introductions available on
the web [30] to read about the basic method and its variants. We
only summarise here the very basics before describing its use for
deconvolution and the actual implementation we use.
The solution of a problem is represented as an ‘individual’, and a

certain number of individuals form a population. The fitness of
each individual is calculated which measures the quality of the
solution. Individuals with high fitness are selected to mate, and
reproduction of individuals is done by crossover of these parents,
thus inheriting some features from both of them. After crossover,
each offspring has a chance to suffer mutation, and then the new
generation is selected. Members of the next generation can be
Wiley & Sons, Ltd. J. Chemometrics 2009; 23: 188–196
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selected either from parents and offspring, or only from the
offspring. If the very fittest parent(s) are only selected in addition
to offspring, this is called an elitist selection, which guarantees a
monotonic improvement of the fittest individual from generation
to generation. A GA starts with the selection of an initial
population, and continues with iteration steps resulting in new
generations. The iteration is stopped either by the fulfilment of
some convergence criterion, or after a predetermined number of
generations. The best fit individual—called the winner—is
selected as the solution of the problem.
In the ‘classical’ version of GA, individuals have been

represented as a binary string, which coded either the complete
solution, or parameters to be optimised. These strings were
considered as the genetic material of individuals, or chromo-
somes, while the bits of the string as genes, having two different
alleles, 0 or 1. As it is sometimes problematic to represent a
solution in the form of binary strings, for numerical optimisation
purposes, floating point coding is usually used, which allows
virtually infinite number of alleles. Classical (binary) genetic
operators have accordingly been also replaced by arithmetic
operators. The ‘art’ of using GA’s is in finding a suitable
representation or data structure for the solution and using
genetic operators that can explore the solution space in an
efficient way, avoiding local optima and converging quickly to the
global optimum.
Deconvolution methods described in the literature use

different representations and a variety of genetic operators.
While binary coding and classical binary crossover and mutation
are appropriate for processing black and white images [16], much
more ‘tricky’ encoding and operators should be used to
deconvolve measured kinetic signals [24]. Generation of the
initial population may also be critical. One method is the
completely random generation of the first individuals, while a
careful generation of already fit individuals is sometimes
important.
To deconvolve femtosecond kinetic data, we should deal with

the same problems while using a GA as with other methods:
avoid an amplification of the experimental noise as well as
oversmoothing which results in low frequency ‘wavy’ distortion.
The non-periodic nature and sudden stepwise changes should
also be reconstructed without distortion. We have found that the
above needs cannot be fulfilled if we start the ‘breeding’ with a
randomly generated initial population. Therefore, the first task is
to create individuals who already reflect some useful properties
of a good solution.
Before discussing the detailed algorithm, we show here a

schematic description of the procedure we use:
1. S
J. C
tart with the measured (convolved) data set; apply creation
operators using random factors to generate a population of n
chromosomes (candidate solutions of the convolution
equation) each containing the same number of data as the
measured data set.
2. C
alculate the fitness of each chromosome in the population.

3. R
epeat Steps (a)–(c) until n – 1 offspring have been created:

(a) Select a pair of parent chromosomes from the current
population with a probability of selection proportional to
their fitness. Selection is done with replacement, i.e. the
same chromosome can be selected more than once to
become a parent.

(b) Cross over the pair by averaging the corresponding data.
hem
ometrics 2009; 23: 188–196 Copyright � 2009 John Wiley & Sons
(c) Mutate the average with a probability Pm (the mutation
probability or mutation rate) by adding a discretised
random Gaussian to the data set.
, Ltd
Replace the current population with the new population by
adding the best fit individual of the previous population as the
nth individual.
5. If
 the termination condition is not fulfilled, go to Step 2,
otherwise chose the best fit individual (the winner) and
terminate.
1

4.1. Data structure and generation of the initial population

The solution of the convolution Equation (16) is a data set
containing the undistorted (instantaneous) kinetic response of
the sample at the same time instants as the measured image
function. The coded solution is exactly this data set, which means
a vector containing floating point elements, each of them
representing a measured value of the undistorted (instan-
taneous) kinetic response. In terms of GAs, this is a single haploid
chromosome containing as much genes as there are data points
measured. As each parent and each offspring is haploid, there is a
haploid mechanism of reproduction to implement. There is no
need to ‘express’ the genes as phenotypes; the chromosome
already represents the solution itself.
Convolution results in a kind of a weighted moving average,

which widens the signal temporally, diminishes its amplitude,
makes its rise and descent less steep, and smoothes out its sudden
steplike jumps. Accordingly, we started from the image itself to
create the initial population and have implemented an operator
to compress the image temporally, another to enhance its
amplitude, a third one to steepen its rise and decay, and finally, one
to restitute the stepwise jump by setting some leading elements of
the data to zero.
All four operators—which we may call creation operators—are

constructed to conduct a random search in a prescribed
modification range. To this purpose, normally distributed random
numbers are generated with given expectation and standard
deviation for the factor of temporal compression, of amplitude
enhancement, for increasing the steepness of rise and decay, and
for the number of data to cut to zero at the leading edge of the
data set. The whole resulting initial population is displayed
graphically, along with the original image. The best individual and
the result of the convolution of this individual with the spread
function (the reconvolved), as well as the difference of this
reconvolved set from the image is also displayed. If the
reconvolved is too much different from the image, or if there
are spurious oscillations present in the best individual, another
initial population is created with different expectation and/or
standard deviation parameters of the generation operators. The
procedure is repeated until the user is content with the selected
initial population.
Parameterisation of the creation operators can easily be done

on an intuitive basis. The major point is that individuals should be
without fluctuations. With a little experimentation, fairly good
estimates of the deconvolved data set can be chosen as
individuals of the initial population, which guarantees that any
spurious oscillations would die out, and the population is driven
towards a desired global optimum.

4.2. Parent selection and crossover

The quality of the deconvolved data set—an individual of the
population—can be measured readily by the mean square error
. www.interscience.wiley.com/journal/cem
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(MSE) of the reconvolution, given by

MSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
m¼1

ô� sð Þm�im
� �2

N � 1

vuuut
(17)

where ô is the estimate of the deconvolved, i.e. the actual
individual of the population, and N is the number of data in the
image data set. GA literature suggests that some kind of inverse of
this error should be used so that the resulting fitness function is
normalised [28–30]. We implemented a dynamic scaling of fitness
by adding the minimal MSE of the population in the
denominator:

fitnessm ¼ 1

minðMSEÞ þMSEm
; (17)

which maintains the fitness values in the range from
1/((min(MSE)þmax(MSE)) to 1/(2min(MSE)).
To choose parents for mating, we use stochastic sampling with

replacement, implemented as a roulette-wheel selection [27–30],
which imitates natural selection in real-world population
dynamics. To have the offspring, arithmetic crossover of the
parents is performed, which results in an offspring whose data
points are the average of the corresponding parents’ data.
(Fitness-weighted averages did not result in an important
difference concerning convergence and the quality of the
winner.) This procedure of parent selection and crossover is made
until the number of produced offspring becomes the same as
the number of population minus one.
4.3. Mutation and selection of the new generation

The arithmetic crossover explores the potential solutions within
the range represented by the initial population, but it cannot
move the population out of this region. Mutation is used to
further explore the fitness landscape of the solution space. This is
also a crucial operator to avoid the usual noise amplification and
low-frequency wavy behaviour. A ‘smooth’ mutation of neigh-
bouring data points results in an effective smoothing of the
mutated individuals after a few crossovers. It has been
implemented as an addition of a randomly generated Gaussian
to the actual data set. The expectation (centre), the standard
deviation (width) and the amplitude of the additive Gaussian
correction is randomly selected within a specified range,
including both positive and negative amplitudes. (Leading zeros
of the initial population get never changed by mutation, which is
equivalent to a semi-finite-support constraint [14,31,32].) If there
is a long tail of the kinetic response (e.g. due to largely different
characteristic times involved in the reaction mechanism), its slow
decrease can also be reconstructed by this mutation, even if the
initial population had a much sharper decrease without a long
tail.
There is another feature which proved to be useful;

non-uniform mutation [29]. This is responsible for a fine-tuning
of mutations so that it moves even a rather uniform and close to
optimal population further towards the global optimum. If the
mutation amplitude is small, the convergence at the beginning of
the iteration is also small. A larger amplitude results in a faster
convergence but makes the improvement of individuals quite
improbable after the deviation of the solution from the optimum
www.interscience.wiley.com/journal/cem Copyright � 2009 John
is much less than the mutation amplitude. To get a closer match
of the optimum, it is necessary to diminish the amplitude of the
mutation as the number of generations increases, or with
decreasing deviation from the optimum. We perform this
adjustment by estimating the experimental error as the standard
deviation of measured image data in the range where its values
aremore or less constant. (For example in the leading zero level of
the signal.) Comparing this experimental error to the difference
between the MSE of the fittest and the least fit individuals, the
amplitude parameter of the Gaussian mutation is multiplied by
the factor

f ¼ 1� e1�
MSE difference

experimental errorð Þp (18)

This factor goes to zero as the MSE difference of the best fit and
the least fit individuals goes to the experimental error. This
correction also avoids too large modifications, resulting in a less
noisy deconvolved data set. The higher the power p, the more
enhanced is the tuning effect of the factor. To avoid problems
arising from an overestimation of the experimental error, this
factor f can be checked and set equal to a prescribed smallest
value if the ratio in the exponent becomes too much close to one,
or even less.
When the number of newly generated offspring equals the

population number minus one, selection of the new generation is
done. All the parents die out except for the best fit which also
becomes member of the new generation. This selection method
is called single elitism and guarantees a monotonous improve-
ment of the best individual.
4.4. Termination and the choice of the winner

After each generation, the quality of individuals is evaluated by
the MSE between image and reconvolved, as it is necessary to
calculate the fitness. In addition, the Durbin–Watson (DW)
statistics of the residual differences between these two data sets
in the case of the best fit individual is also calculated [33–35]. The
equivalent of the experimental error—the standard deviation of
a few data of the image data set which can be considered
constant—can be calculated similarly from the deconvolved
data.
To terminate the iteration, we can use the criterion that the

MSE between the image and the reconvolved data set of the best
individual—the winner—should be less than or equal to the
experimental error. However, it does not guarantee that the
reconvolved solution closely matches the image; there might
be some bias present in the form of low-frequency waviness. The
DW statistics is a sensitive indicator of such misfits. For the large
number of data in a kinetic trace (typically more than 200), its
critical value for a test of random differences is around 2.0
[33–34], and it is typically much lower than that for a wavy set of
differences. Thus we may either use a DW value close to 2.0 as a
criterion, or combine the experimental error criterion with the
DW criterion so that both of them should be fulfilled.
There are less specific GA properties that can also be used to

stop the iteration. If the MSE of the best individual would not
change for a prescribed number of generations, the algorithm
might have converged. Similarly, if the difference between the
MSE of the best fit and the least fit individual becomes less than
the experimental error, we cannot expect toomuch change in the
population due to mutations. However, the use of these criteria
Wiley & Sons, Ltd. J. Chemometrics 2009; 23: 188–196



Figure 1. Deconvolution results for synthetic transient absorption data F3 with bleaching. (a) Time-domain representation showing the undistorted

object (open circles), the synthetic image with added noise (full circles), the deconvolved data (solid curve close to the object), the reconvolution of the
deconvolved data (solid curve close to the image) and the residual differences between image and reconvolved (dots). The inset shows deconvolution

results obtained with a regularisation filter. (cf. Reference [14]) (b) Frequency-domain representation showing the amplitude spectra of the corresponding

data using the same notation as in panel (a). The best result obtained with a regularisation filter is shown as a dashed curve.

Efficient model-free deconvolution using a genetic algorithm
only indicates that the GA itself has converged but it does not
guarantee a satisfactory solution.
1

5. RESULTS AND DISCUSSION

We have implemented the GA described above as a package of
user defined Matlab functions and scripts. All the input data
including filenames and operator parameters are entered into a
project descriptor text file. The output file contains the entire
project descriptor, statistical evaluations, and all relevant results.
In addition, there is a four-panel figure displayed, containingmost
of the results for immediate graphical evaluation.
To test the performance of the algorithm, we used the same

synthetic data calculated for a simple consecutive reaction
containing two first-order steps, as in previous publications
[12–14]. These three data sets were chosen so that they mimic
typical transient absorbance curves, including a completely
decomposing reactant (hereafter: F1) along with two transients;
one containing also a product with positive remaining DOD (F2)
and another with bleaching, i.e. with negative remaining DOD
(F3). Characteristic times were set at 200 and 500 fs, and
calculated data were convolved with a 255 fs fwhm effective
pulse. Kinetic responses were sampled at 30 fs intervals, and a
normally distributed noise of 2% of their maximum amplitude
was added. However, as recent measurements in fluorescence
detection also explored extremely short characteristic times with
simultaneous long-time components [36,37], we also tested a
synthetic data set mimicking this situation, with the actual
fluorescence intensity If calculated as

If ¼ 0:9 e�
30 fs
t þ 0:1 e�

150 fs
t (19)

This function was convolved with an effective pulse of 330 fs
fwhm, sampled at 11 fs intervals, and a normally distributed noise
of 0.5% of maximum intensity was added, which reflects typical
experimental conditions[36,37]. While the data set with bleaching
necessitates the most careful transformations using the creation
operators, this double fluorescence decay challenges the power
of the algorithm to reconstruct an extremely large stepwise jump
J. Chemometrics 2009; 23: 188–196 Copyright � 2009 John Wiley & S
followed immediately by a steep decay with a tenfold shorter
characteristic time than that of the IRF, then ending in a long tail.

5.1. Test results for synthetic data

Figure 1a shows the best result obtained for a highly non-periodic
synthetic data set comprising both positive and negative data, a
slight initial stepwise jump and a remaining bleaching. As it can
be seen, there is still a slight wavy bias at a few data points
immediately after the steplike initial rise, but its amplitude rapidly
diminishes within the experimental noise, and further on it
becomes rather a random noise without bias. It can be compared
to the best inverse filtered result [14] (inset), where a more
substantial wavy behaviour is present along the whole
deconvolved curve. (It should be noted that a slight initial wavy
bias is usually present even in the case of reconvolution using a
known model function.) We can judge the superior quality of the
deconvolution result obtained using the GA comparing the
spectral amplitudes of the data in the frequency domain
(Figure 1b). The deconvolved (winner) has only slightly larger
high-frequency components than the original (noise-free) object
function (indicating that the winner data set also contains noise
which is not present in the displayed—noiseless—object data),
so the deconvolved signal has practically been reconstructed in
the entire frequency range. In contrast to this frequency beha-
viour, the best inverse filtered result obtained in Reference [14]
has a frequency spectrum where the amplitude of the
deconvolved data sharply diminishes after channel 10 with
respect to the object (dashed curve in Figure 1b). The frequency
damping is about 100-fold above channel 20 and at higher
frequencies. Results obtained with the best iterative methods are
quite similar; there is always an important loss in high-frequency
components during deconvolution [14].
Table I shows some quantitative statistical data to compare the

quality of different deconvolution methods. The MSE of the
deconvolved data set resulting from the GA is always
substantially less then the MSE of the deconvolved data set
resulting from reconvolution, though this latter explicitly includes
the known model function used to constrain deconvolution. A
remarkable feature is that—while F2 and F3 obtained with GA
have roughly twice as large an MSE as that of the image with
ons, Ltd. www.interscience.wiley.com/journal/cem
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Table I. Comparison of statistics characterising the quality of deconvolution for synthetic transient absorption data

Deconvolution method Statisticsa F1 F2 F3

Reconvolution (using known model) MSE 0.260 0.661 0.727
DW 0.587 1.535 1.882

Bayesian iteration of reblurred data MSE 2.392 1.045 0.714
DW 1.191 0.225 0.311

Inverse filtering (using Wiener filter) MSE 2.320 1.018 0.707
DW 1.156 0.214 0.301

Genetic algorithm MSE 0.158 0.446 0.324
DW 0.893 1.841 1.284

MSE of image with respect to reconvolved 0.248 0.202 0.203

MSE: mean square error; DW: Durbin–Watson.
a Both MSE and DW refer to differences of the deconvolved data set with respect to the noiseless object.

Figure 2. Deconvolution results for synthetic transient fluorescence data, using the same notation as in Figure 1. (a) Time-domain data.

(b) Frequency-domain representation showing the amplitude spectra. Note the complete recovery of the frequencies of the object data set.

Figure 3. Deconvolution results for experimental transient fluorescence

data of adenosine monophosphate in aqueous solution obtained by
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respect to reconvolved—F1 obtained with GA has only about
60% of the MSE of image with respect to reconvolved. This
indicates that GA is extremely powerful as a deconvolution
method if there is a steplike increase in the kinetic function, as in
the case of a reactant-like species—it even smoothes the noise in
the measured (image) data during deconvolution.
DW statistics also reveal the superiority of the GA deconvolu-

tion method. Actual realisations of this statistics are quite closer
to the limiting value indicating no serial correlation (2.0) for F1
and F2, than for the reconvolution results. The case of F3 is
different, as the DW statistics is based on neighbouring MSE
differences, and the MSE is rather low for the deconvolution of
the image originating from F3; i.e. the somewhat lower value of
the DW statistics is a result of a substantially lower MSE.
Figure 2 shows the deconvolution results of synthetic

fluorescence data. Though the image function is periodic in this
case—as in many real-life experimental data—it has a large
steplike jump from its minimal to its maximal value within one
channel. This jump is also characteristic in most of the real-life
experiments. The sudden steplike change could not have been
reconstructed either with inverse filtering [13,38], or with iterative
deconvolution methods [14,38]; the sharp peak at the initial jump
had always become slightly curved and its amplitude diminished,
having resulted in a considerable low-frequency wavelike
www.interscience.wiley.com/journal/cem Copyright � 2009 John
oscillation before and after the maximum (see inset). As it can
be seen from the figure, the sudden steplike jump is completely
recovered by the GA deconvolution, without any bias in the form
of low-frequency oscillations. The residual differences between
the image and the reconvolved look completely random, and the
Wiley & Sons, Ltd. J. Chemometrics 2009; 23: 188–196



Figure 4. Deconvolution of the same data as shown in Figure 2. with an enlarged amplitude scale. (a) The best individual of the initial population (i.e.

first generation, no iteration). (b) Results starting from the same initial population but after 2000 generations.

Efficient model-free deconvolution using a genetic algorithm
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frequency spectrum of the deconvolved (winner) is also identical
to that of the object. The reconvolved curve has larger low
frequency amplitudes but much smaller high frequency
amplitudes than the image data. Accordingly, in the time
domain, the reconvolved data set is markedly smoother than the
original image.
Quantitative statistics also support the surprisingly good quality

of the GAdeconvolution. MSE of the deconvolved datawith respect
to the noiseless object is 36 times less than for the best inverse
filtered result, and the DW statistics is almost three times greater
(1.791) than that of the inverse filtered deconvolved (0.619), though
the former is normalised to the 36 times smaller MSE.

5.2. Test results for experimental data

Test results for an experimental transient fluorescence data set
are shown in Figure 3. These data are collected at 33.33 fs
intervals per channel, and the experimentally determined
effective pulse has a width of 270 fs fwhm, i.e. 8 channels. The
expected sudden jump is fully recovered, and the residual error of
the reconvolved data with respect to the measured image is
almost completely random. The only exception can be observed
from channel 31 to 36, where the residual error has a slight
humplike bias. This is the consequence of a marked shoulderlike
feature in the measured image data around the corresponding
delay times which is either a kinetic effect, or some experimental
artefact which is reflected also in the deconvolved data set. Even
with this small discrepancy, the deconvolved curve can be
considered as a successful reconstruction of an instantaneous
fluorescence response. The amplitude spectrum of the winner
(not shown) displays a quite similar behaviour as in the case
of the synthetic fluorescence data in Figure 2(b); the amplitude of
the winner at higher frequencies is larger by a factor of 20 than
that of the image.

5.3. Some remarks on mutations used

It is worth mentioning the ability of mutations to arrange for the
mismatch of long-tailed data sets. As already pointed out, in case
if there are largely different characteristic times involved in the
kinetics studied (30 and 150 fs in the case of the synthetic
fluorescence data shown in Figure 2), one of the operators to
create the initial individuals, which increases the decay rate of the
image data set, provides individuals whose decay is so sharp that
J. Chemometrics 2009; 23: 188–196 Copyright � 2009 John Wiley & S
their long tail is largely suppressed. Though this is necessary to
reconstruct the sharp decay following the steplike jump due to
the short characteristic time, the missing tail results in a
considerable mismatch of the reconvolved and the image data.
With a little experimentation, it can easily be seen that a satisfying
solution can be achieved increasing the initial amplitude and
letting to form a lower tail while creating the initial individuals,
leaving the tail correction to the mutations of subsequent
generations.
To illustrate the success of this procedure, Figure 4 shows the

tail part of the deconvolved set for the same data as seen in
Figure 2. In panel (a) we can see the best individual of the initial
population, while panel (b) shows the winner after 2000
generations. As crossovers cannot change the values of the
alleles (data at a given time channel) out of the region already
contained in the initial population, it is the mutations that ‘fill up’
the gap in the missing tail and ‘push down’ the values that are too
high at the maximum. The result of the simultaneous change of
neighbouring channels using the random Gaussian is a
smoothened deconvolved with an excellent fit.
Another feature worth mentioning is the effect of the

non-uniformmutation. It allows large mutations at the beginning
of the iteration but diminishesmutation amplitude when theMSE
differences within the population become close to the
experimental error in the measured data. As a consequence,
low-frequency waviness is further suppressed andmutations lead
to a smoother deconvolved data set. A value of the exponent
p¼ 1.5 proved to be efficient when deconvolving the data shown
here. The number of necessary generations to reach an optimal
solution is usually a few thousands, but it takes only a couple of
minutes even on a moderately fast desktop PC.
6. CONCLUSIONS

During the last decade, there have been a few attempts to apply a
GA for deconvolution purposes with considerable success. The
modified GA for the model-free deconvolution of transient
ultrafast kinetic signals described here uses the measured
transient data as chromosomes containing floating point genes, a
careful generation of initial individuals followed by an evolution
combining crossing, selection and mutation operators leading to
unprecedented results concerning the quality of the decon-
volved data.
ons, Ltd. www.interscience.wiley.com/journal/cem
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The main shortcoming of deconvolution methods used
previously to transient kinetic data was the limited reconstruction
capacity of the high-frequency components of the transient
signal and a low-frequency wavy behaviour of the deconvolved
data. To overcome these shortcomings, we have modified the
classical GA by introducing a careful generation of the initial
population and a special mutation changing neighbouring genes
simultaneously. Due mainly to the operator which cuts some
leading data of the signal to zero, and to the mutation procedure
that maintains these leading zeros, the high-frequency part can
be fully reconstructed. This results in a deconvolved data set with
the expected sudden steplike increase. The waviness is avoided
by applying the smooth arithmetic mutation of neighbouring
genes instead of single point mutations, along with a dynamically
changing mutation that fine-tunes the amplitude of the changes
according to the closeness of the population to the optimal
solution.
Deconvolution using this modified GA outperforms existing

algorithms and produces unprecedented quality of the recon-
structed original signal for highly non-periodic transient
absorption as well as highly distorted steplike fluorescence
traces. Results on real-life experimental data also support the
applicability of the proposed deconvolution method.
Further work is in progress to explore the power of the applied

GA, and to develop a user-friendly, interactive graphical interface
that largely facilitates the use of the deconvolution code. An
attempt is also made to allow a fully automated routine
deconvolution with the least possible intervention of the user.
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in Spektrallinien. Z. Phys. 1932; 79: 722–730.

2. Fell AF, Scott HP, Gill R, Moffat AC. Novel techniques for peak
recognition and deconvolution by computer-aided photodiode array
detection in high-performance liquid-chromatography. J. Chroma-
togr. 1983; 282: 123–140.

3. Mitra S, Bose T. Adaptive digital filtering as a deconvolution procedure
in multiinput chromatography. J. Chromatogr. Sci. 1992; 30: 256–260.

4. Chase WJ, Hunt JW. Solvation time of electron in polar liquids – water
and alcohols. J. Phys. Chem. 1975; 79: 2835–2845.

5. Pananakis D, Abel EW. A comparison of methods for the deconvolu-
tion of isothermal DSC data. Thermochim. Acta. 1998; 315: 107–119.

6. Gobbel GT, Fike JR. A deconvolution method for evaluating indica-
tor-dilution curves. Phys. Med. Biol. 1994; 39: 1833–1854.

7. McKinnon AE, Szabo AG, Miller DR. Deconvolution of photolumines-
cence data. J. Phys. Chem. 1977; 81: 1564–1570.
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