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1. Tricks and tips

What I hear, I forget,
What I see, I remember,

What I do, I know.

old Chinese proverb

1. Read the question carefully from the beginning to the end. Try to figure out the specific
problem or topic you have to deal with.

2. When reading for the second time, write down all data, and convert them to the required
units.

(a) If you have to calculate ratio of values, conversion is not necessary, but make sure that
you have the data in the same units. You can save time in this way.

(b) Temperature must always be changed to Kelvin, except when you need temperature
differences only. In that case, ◦C is also applicable.

(c) Do not forget about the prefixes (mega-, milli-, micro-, etc.) of the units.

3. If it is appropriate, draw a diagram or a figure. This might help a lot.

4. Choose the right formula(e) (see the Appendix).

5. If applicable, check, whether you have the same number of equations as unknowns. If not,
you need to find more relations among your variables.

6. Before substituting your numerical data, express the unknown(s) from the equation(s) you
have. Even if you miscalculate something, it will be clear that you are aware of the underlying
relations.

7. Give a correct numerical answer, if possible. Never forget to state its units. The number of
significant digits1 of the solution should not be greater than those of the original data.

8. Check if your answer is physically and chemically meaningful.

9. Check if you answered the questions that were asked, and if you have answered all questions.

10. If you can think of an alternative way of solution, at least sketch it. These are always warmly
welcome and rewarded with extra points in an exam or homework.

1 1.2 has two significant digits, 1.2000 has 5



2. Problems

The source of the problems in this compilation are the book of Callen, the book of Atkins, the
Web, and there are own problems as well. They are compiled to be used during the second year
physical chemistry course in English.

2.1 Heat and work
1. A particular gas is enclosed in a cylinder with a moveable piston. It is observed that if the

walls are adiabatic, a quasi-static increase in the volume results in a decrease in pressure
according to the equation:

P 3V 5 = constant (for Q = 0)

(a) Find the quasi-static work done on the system and the net heat transfer to the system
in each of the three processes (ADB, ACB, and the direct linear process AB) as shown
in the figure (PC = 3125 Pa).
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(b) A small paddle is installed inside the system and is driven by an external motor (by
means of a magnetic coupling through the cylinder wall). The motor exerts a torque,
driving the paddle at an angular velocity ω, and the pressure of the gas (at constant
volume) is observed to increase at a rate given by

dP

dt
=

2

3

ω

V
· torque

Show that the energy difference of any two states of equal volumes can be determined
by this process. In particular, evaluate UC −UA and UD −UB. Explain why this process
can proceed only in one direction (vertically upward rather than downward in the P −V
plot).

(c) Show that any two states (any two points in the P − V plane) can be connected by a
combination of the processes in (a) and (b). In particular, evaluate UD − UA.

(d) Calculate the work WAD in the process A −→ D . Calculate the heat transfer QAD.
Repeat for D −→ B , and for C −→ A . Are these results consistent with those of (a)?



2. For a particular gaseous system it has been determined that the energy is given by

U = 2.5PV + constant

(a) Calculate Q and W along the parabola P = 105 + 109 · (V − 0.02)2 between the points
A(0.2 MPa, 0.01 m3) and B(0.2 MPa, 0.03 m3).

(b) Find the equation of the adiabats in the P − V plane (i.e. find the form of the curves
P = P (V ) such that đQ = 0 along the curves).

3. For a particular gaseous system it has been determined that the energy is given by:

U = 3.50PV + constant

The system is initially in the state P = 0.60 MPa, V = 0.02 m3; designated as point A in
the figure. The system is taken through the cycle of three processes ( A −→ B , B −→ C ,
C −→ A ), shown in the figure. The system between points C and A moves along the curve
P = 0.584 + 2000× V 3; B: 0.60 MPa, 0.07 m3; C: 1.27 MPa, 0.07 m3.
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(a) Calculate Q, W and ∆U for each of the processes.
(b) Find the equation of the adiabats in the P − V plane (i.e. find the form of the curves

P = P (V ) such that đQ = 0 along the curves).

4. A mixture of two different types (f1 = 3, f2 = 6) of ideal gases (n1 = 1 mol, n2 = 2 mol) is
taken through a cycle of four known quasi-static processes (A → B → C → D). The internal
energy function of the system is:

U = U1 + U2 Ui =
fi

2
niRT

Calculate all the missing quantities in the tables below.
State T/K P/kPa V /dm3

A 10 (3/2)5 ∗ 50
B 100
C 50
D

Process ∆U / kJ W / kJ Q / kJ
A → B Isothermal compression
B → C Isobaric cooling
C → D Isochoric heating
D → A Adiabatic expansion

Homework : Callen 1.8-1, 1.8-2
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2.2 Fundamental equation and equations of state
1. Two moles of a particular single-component system are found to have a dependence of internal

energy U on pressure and volume given by:

U = APV 2 (for N = 2)

Note that doubling the system doubles the volume, energy, and mole number, but leaves the
pressure unaltered. Write the complete dependence of U on P , V , and N for arbitrary mole
number.

2. Find the three equations of state for a system with the fundamental equation

U =

(
v0θ

R2

)
S3

NV

(a) Corroborate that the equations of state are homogeneous zero order (i.e., that T , P , and
µ are intensive parameters).

(b) Find µ as a function of T , V , and N .

3. Find the three equations of state for a system with the fundamental relation

S

R
=

UV

N
− N3

UV

(a) Show that the temperature is intrinsically positive.

(b) Find the “mechanical equation of state” P = P (T, v).

(c) Find the form of the adiabats in the P − v plane. (An “adiabat” is a locus of constant
entropy, or an “isentrope”).

4. It is found that a particular system obeys the relations

U = PV

and
P = BT 2

where B is constant. Find the fundamental equation of the system.
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5. A particular system obeys the relation

u = Av−2 exp(s/R)

N moles of this substance, initially at temperature T0 and pressure P0 are expanded isentrop-
ically (s = constant) until the pressure is halved. What is the final temperature?

6. Show that, in analogy with equation du = Tds− Pdv, for a system with r components

du = Tds− Pdv +
r−1∑
j=1

(µj − µr)dxj

where the xj are the mole fractions (= Nj/N).

7. The following equation is purported to be the fundamental equation of an idealized solid body
(A,B, D, s0, v0, u0 are positive constants):

S = Ns0 + NB ln

(
U

Nu0

− D

2

(
V

Nv0

− 1

)2
)

+ AV

(a) Is it consistent with Postulates II-IV? (Check them all.)

(b) Give the fundamental equation in the energy representation.

8. The following equation is purported to be the fundamental equation of a well-known, idealized
thermodynamic system.

U(S, V,N) = AN
f+2

f V − 2
f e

2S
fNR

The quantities A and f are positive constants. R is the gas constant.

(a) Is this fundamental equation consistent with Postulate III-IV?

(b) Find the three equations of state in entropy representation.

(c) What can be the system described by the equation above?

9. Find the three equations of state in the entropy representation for a system with the following
fundamental equation(Θ, R and v0 are constants):

u =
Θ

R
s2e−v2/v2

0

Give the corresponding Euler form of the fundamental equation, also in entropy representa-
tion.

10. A system obeys the two equations u = 3/2Pv and u1/2 = BTv1/3. Find the fundamental
equation of the system (B is a constant).

Homework : Callen 2.2-4
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2.3 Thermal, mechanical, and chemical equilibrium
1. Two particular systems have the following equations of state:

1

T (1)
=

3

2
R

N (1)

U (1)

and
1

T (2)
=

5

2
R

N (2)

U (2)

where R is the gas constant. The mole number of the first system is N (1) = 2 and that of
the second is N (2) = 3. The two systems are separated by a diathermal wall, and the total
energy of the composite system is 2.5×103 J. What is the internal energy of each system in
equilibrium?

2. Two systems with the equations of state given in Problem 1 are separated by a diathermal
wall. The respective mole numbers are the same as in that problem. The initial temperatures
are T (1) = 250 K and T (2) = 350 K. What is the equilibrium temperature?

3. Three cylinders containing gases are fitted with four pistons (see blackboard). The cross-
sectional areas of the cylinders are in the ratio A1 : A2 : A3 = 1 : 2 : 3. Pairs of pistons
are coupled so that their displacements (linear motions) are equal. The walls of the cylinders
are diathermal and are connected by a heat conducting bar. The entire system is isolated (so
that, for instance, there is no pressure exerted on the outer surfaces of the pistons). Find the
ratios of the of pressures in the three cylinders in equilibrium.

4. The hypothetical problem of equilibrium in a closed composite system with an internal move-
able adiabatic wall is a unique indeterminate problem. Physically, release of the piston would
lead it to perpetual oscillation in the absence of viscous dumping. With viscous dumping the
piston would eventually come to rest at such a position that the pressures on either side would
be equal, but the temperatures in each subsystem would then depend on the relative viscosity
in each subsystem. The solution of this problem depends on dynamical considerations. Show
that the application of the entropy maximum formalism is correspondingly indeterminate
with respect to the temperatures (but determinate with respect to the pressures).

5. The hydrogenation of propane to form methane proceeds by the reaction

C3H8 + 2 H2
−−⇀↽−− 3 CH4

Find the relationship among the chemical potentials and show that both the problem and the
solution are formally identical to that of the following mechanical equilibrium: three cylinders
of identical cross-sectional areas fitted with a piston, and each contains a gaseous system (not
necessarily of the same composition). The pistons are connected to a rigid bar hinged on a
fixed fulcrum (see blackboard). The “moment arms”, on the distances from the fulcrum, are
in the ratio of 1:2:3. The cylinders rest on a heat conductive table of negligible mass. The
entire system is isolated and no pressure acts on the external surfaces of the pistons.

6. Two particular systems have the following equations of state:

1

T (1)
=

3

2
R

N (1)

U (1)
and

1

T (2)
=

5

2
R

N (2)

U (2)
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where R is the gas constant. The mole number of the first system is N (1) = 5 and that of the
second is N (2) = 2. The two systems are initially separated by an adiabatic and rigid wall.
Initially T (1) = 300 K and U (2) = 1.5 × 103 J. What is the equilibrium temperature, if the
wall becomes permeable with respect to heat (becomes diathermal)?

7. Two isolated cylinders (A and B) are separated by a wall, which is diathermal, moveable, but
impermeable with respect to matter. Cylinder A is filled with a monatomic ideal gas, while
cylinder B is filled with a diatomic ideal gas. Initially the two systems are at equilibrium:
UA=10 kJ, VA=5 dm3, NA=3, and NB=2.

(a) Calculate the volume of cylinder B.

(b) Subsequently 3 kJ heat is introduced in cylinder A by means of an electric wire. Calculate
the temperature and the pressure at the new equilibrium.

2.4 Engine, refrigerator and heat pump
1. For the P–V diagram shown you can calculate the ratio work done

heat taken in−heat dumped
1, which is in a

cycle to be equal to unity, independent of the type of gas used in the engine.

(a) Why is it equal to unity?
(b) As you might know, a more important ratio is the efficiency of the engine, µ = work done

heat taken in
,

since the amount of fuel used to produce the work depends on (heat taken in) and not
on (heat taken in)-(heat dumped). What is the efficiency of the engine if the working
substance of the engine is one mole of ideal monatomic gas?

(c) One mole of ideal diatomic gas?
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2. An engine goes through states 1 −→ 2 −→ 3 −→ 4 −→ 1 , in a manner that the states are
connected with straight lines in the T–S plane. The engine uses water as an auxiliary media.
State T/ K P / kPa v / dm3mol−1 u / kJ mol−1 h / kJ mol−1 s / kJ mol−1K−1 Comp

1 500 2367 0.02165 17.52 17.57 0.0465 L
2 500 2367 1.367 46.91 50.51 0.1124 V
3 300 3.536 506.8 31.84 33.63 0.1124 L+V
4 300 3.536 189.7 13.19 13.86 0.0465 L+V

What cycle does the engine use? Draw both the P–V and the T–S diagram and label the
processes. Also, indicate schematically the phases on the T–S graph. Calculate the quasi-
static heat and work for all processes. What is the efficiency of the engine? How does it
compare to the theoretical efficiency for this cycle?

1 heat dumped=hőveszteség
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3. Water is used as a working fluid in a power plant. It goes through the states, listed in the
table below. Sketch the processes in a P–V , and also in a T–S diagram. (Hint: If for a state
a value is the same as in the preceeding one, the system moves on a straight line on the
appropriate graph). Calculate the reversible work and heat for processes 1 → 2, 2 → 3 and
3 → 4 if 2 kg of water is used, and explain briefly the reason for the data chosen. If there are
more than one way to calculate an answer, compare the different solutions.

state t P v u h s
and phase °C MPa m3kg−1 kJ kg−1 kJ kg−1 kJ kg−1K−1

1: liquid(40%)+vapour(60%) 300 8.581 0.01357 2071 2187 4.724
2: saturated vapour 300 8.581 0.02167 2563 2749 5.704
3: overheated vapour 300 1.000 0.2579 2793 3051 7.123
4: saturated vapour 120.5 0.2017 0.8788 2530 2707 7.123

4. A Rankine cycle using a liquid and its vapour as the working media (see figure) is charac-
terised by the following data (subscripts: v: vapour, l liquid).

T/ °C Pv / MPa vv / dm3mol−1 vl / dm3mol−1 uv / kJ mol−1 ul / kJ mol−1

10 0.0602 38.03 0.09089 29.0 5.831
-18 0.01733 121 0.08723 27.3 2.543

(a) Label the diagram for processes 1 −→ 2 and 2 −→ 3 . Draw and label a P–V diagram
for the two processes as well.

(b) Calculate ∆S, ∆U , W and Q for processes 1 −→ 2 and 2 −→ 3 , if the vapour to
liquid ratio is 0.1163 in state 3 and 1 mole of substance is used. Temperature in state
1 and 2 is 10°C, in state 3 it is −18 °C. Present the final results in a table. Hint: the
properties of a system of liquid and vapour can be calculated by taking the percentage
values of each component. For example the internal energy of a system containing 30%
liquid can be calculated as:

u = 0.3 ∗ ul + 0.7 ∗ uv (2.1)

.

3

2 1

T

S

5. In old time refrigerators, ammonia was the working fluid. In the table below, the states of
ammonia are listed in a refrigeration cycle, 1 → 2 → 3 → 4 → 1.

No. T P v u h s composition phase
°C MPa m3kg−1 kJ kg−1 kJ kg−1 kJ kg−1K−1

1 –24 0.1587 0.7385 1295 1413 5.679 1 Saturated Vapor
2 40 0.4247 0.3466 1395 1542 5.679 - Superheated Vapor
3 40 1.555 0.01801 563.2 591.2 2.059 0.2 Liquid Vapor Mixture
4 –24 0.1587 0.2431 472.2 510.8 2.059 0.3278 Liquid Vapor Mixture
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(a) Calculate the quasi-static heat and work for each step of the complete cycle. Sketch the
system in T–S plane (using straight lines only). Present your final answers in a table.

(b) Calculate the efficiency of the cycle: η = heatwithdrawnby ammonia at−24oC
work done on ammonia

2.5 Measurable quantities
1. Show that cP /cv = κT /κS

2. The density of mercury at various temperatures(°C) is given in g cm−3:

ρ t ρ t ρ t
13.6202 -10 13.5217 30 13.3283 110
13.5955 0 13.4973 40 13.1148 200
13.5708 10 13.4729 50 12.8806 300
13.5462 20 13.3522 100 12.8572 310

Calculate α at 0°C, at 45°C, at 105°C, and at 305°C.

Should the stem of a mercury-in-glass thermometer be marked off in equal divisions for equal
temperature intervals if the coefficient of the thermal expansion of glass is assumed to be
strictly constant?

3. Express α, κT , cP and cV functions of the system, described in problem 4 of 2.1.

4. Compute the coefficient of expansion and the isothermal compressibility in terms of P and v
for a system with the van der Waals equation of state (P = RT

v−b
− a

v2 ).

5. Show that α = 1/T and κ = 1/P for an ideal gas.

6. Show that
(

∂cv

∂v

)
T

= 0 for an ideal gas.

7. Show that
(

∂cv

∂v

)
T

= T
(

∂2P
∂T 2

)
v

8. 50 g liquid is evaporating adiabatically at constant pressure. Calculate the decrease in the
liquid’s temperature, if 1 g of the liquid has already evaporated. The molar heat of evaporation
of the liquid is 36 kJ mol−1, its isobar molar heat capacity is 112 J K−1mol−1, both are assumed
to be independent of temperature. The molar weight of the liquid is 32 g mol−1.

9. Show that đQ = cpdT − TvαdP .

2.6 Maxwell relations
1. Show that đQ = cp dT − Tvα dP .

2. In the immediate vicinity of a state T0, v0 the volume of a particular system of 1 mole is
observed to vary according to the relationship

v = v0 + a(T − T0) + b(P − P0)

Calculate the transfer of heat đQ to the system if the molar volume is changed by a small
increment dv = v − v0 at constant temperature T0.
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3. Prove the validity of the form of the Gibbs-Helmholtz equation: H =
(

∂(G/T )
∂(1/T )

)
P

using the
total differential of G and standard differentiation rules.

4. Derive a general expression for dS as a function of temperature and pressure using Maxwell
relations. The resulting equation should contain measurable quantities.

5. How can you transform the following derivatives?

(a)
(

∂U
∂V

)
T

(b)
(

∂U
∂V

)
S

(c)
(

∂G
∂P

)
S

(d)
(

∂S
∂T

)
V

(
∂P
∂S

)
V

(e)
(

∂S
∂T

)
V

/
(

∂S
∂P

)
V

6. Prove that the following relation applies for any thermodynamic system:
(

∂U

∂V

)

T

=
α

κT

T − p

where α a is the thermal expansion coefficient, and κT is the coefficient of isothermal com-
pressibility.

7. Show that
(

∂cv

∂V

)
T

= T
(

∂2P
∂T 2

)
V

8. For a particular system of 1 mole, in the vicinity of a particular state, a change of pressure
dP at constant T is observed to be accompanied by a heat flux dQ = AdP . What is the value
of the coefficient of thermal expansion of this system, in the same state?

2.7 Phase transition pure substances
1. The heat of fusion of Hg at its normal melting point, –38.9°C, is 2.82 cal g−1. The densities

of Hg(s) and Hg(l) at the normal melting point are 14.193 and 13.690 g cm−3, respectively.
Estimate the melting point of Hg at (a) 65 atm, and (b) 465 atm.

2. Construct the phase diagram for benzene near its triple point at 36 Torr and 5.50°C using
the following data: ∆fusH = 10.6 kJ mol−1, ∆vapH = 30.8 kJ mol−1, ρ(s) = 0.891 g cm−3,
ρ(l) = 0.879 g cm−3.

3. It is found that a certain liquid boils at a temperature of 95°C at the top of a hill, whereas
it boils at a temperature of 105°C at the bottom. The latent heat is 1000 kJ mol−1. What is
the approximate height of the hill?

4. In the vicinity of the triple point the vapor pressure of liquid ammonia (in Pascals) is repre-
sented by

ln P = 24.38− 3063

T
This is the equation of the liquid-vapor boundary curve in the P–T diagram. Similarly, the
vapor pressure of solid ammonia is

ln P = 27.92− 3754

T
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What are the temperature and pressure at the triple point? What are the latent heats of
sublimation and vaporization? What is the latent heat of fusion at the triple point?

5. Show that, for a transition between two incompressible solid phases, ∆G is independent of
pressure.

6. Why does the latent heat of vaporization vanishes at the critical point for a simple, pure
substance?

7. It has been snowed, and the relative humidity of air is 60% at –2°C. In what temperature range
will all of the snow remain for a long time? (Let’s forget about wind and other unpredictable
meteorological conditions). At the triple point of water P = 0.0060 atm and T = 273.16 K.
The latent heat of vaporisation is 45.05 kJ mol−1, and that of freezing is –6.01 kJ mol−1.
Assume that thermodynamical data are independent of temperature.

8. Find the approximate temperature at which HgO decays. Assume that thermodynamical data
are independent of temperature.

∆fH

 / kJ mol−1 S
 / J mol−1K−1

Hg(g) 61.3 175.5
HgO(s) –90.8 70.3
Hg(l) 0 76.0
O2(g) 0 205.1

9. The freezing point of water decreases with increasing pressure until P = 0.22 GPa. At this
solid-solid-liquid triple point, a new phase of ice, known as Ice-III, appears, and the freezing
point of water from this pressure on increases with pressure. (This is the lowest temperature
at which liquid water is a stable equilibrium phase.) Let us assume that the latent heat
of melting at 273.15 K (333 J g−1), and the densities of ice and water (0.917 g cm−3and
1.00 g cm−3, respectively) are constant up to 0.22 GPa. Estimate the temperature of the
high-pressure solid-solid-liquid triple point.

10. Show that the vaporisation line and sublimation line for water do not have the same slopes
at the triple point in the P–T plane. (Which of them has the greater slope?)
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11. What pressure is required to convert graphite into diamond at 25°C? The following data apply
to 25°C and 100 kPa. Assume the specific volume, vs and κT are constant with respect to
pressure changes.

Graphite Diamond
∆fG


 / kJ mol−1 0. 2.8678
vs / cm3 g−1 0.444 0.284
κT / kPa 3.04× 10−8 0.18710−8

12. (a) An adiabatic system, open to the atmosphere, which has a pressure of 105 Pa, consists
of 1 mol water at 0°C and 6 mol water at 25°C. Assuming a constant specific heat
cP = 75.3 J K−1mol−1 for water, determine the final temperature of the system and the
change in entropy for the spontaneous adiabatic process. Comment your results.

(b) Repeat your calculation with 1 mol of ice instead of 1 mol of water. The latent heat of
melting for ice is 6020 J mol−1.

(c) Repeat your calculation with 6 mol ice and 1 mol water vapor, which has a temperature
of 100°C. The latent heat of vaporisation is 41.4 kJ mol−1.

13. The variation of the melting point of acetic acid with pressure is given by the following
expression, which is valid up to 2× 108 Pa:

t/C = 16.66 + 0.231× 10−6(P/Pa)− 2.25× 10−16(P/Pa)2

What is the melting point and the molar heat of melting of acetic acid at 100 MPa, if the
specific volume change is 0.115 dm3 kg−1? MCH3COOH = 60 g mol−1.

14. Consider the vapour pressure of caesium in equilibrium with liquid caesium. The vapour
pressure of caesium is so low that it behaves as an ideal gas. Also, the molar volume of the
vapour is much larger than the molar volume of the liquid. The latent heat of vaporization
varies with temperature approximately as ∆vapH = a(T0−T )2, where a is a positive constant
and T0 is a reference temperature. Using the above information and the differential form of
the Clausius-Clapeyron equation, obtain an expression for the vapour pressure of caesium at
a temperature T , that is an explicit P = P (T ) function. The vapour pressure of Cs at 500°C
is 104 Pa.

15. The freezing point of water is 273.15 K at p=1 atm. At what temperature does Lake Baikal
freeze to the bottom, if the deepest point of the lake is 1940 m below the surface of the
water? Some useful data: ρH2O = 1.00 g cm−3, ∆fH = 6.02 kJ mol−1, ∆fv = 0.09 cm3 g−1,
MH2O = 18.0 g mol−1.

16. The vapour pressure of water, P , may be approximately represented by the equation, ln P =
B − 4884/T , where B is a constant whose value depends on the units used for P.

(a) Based on the vapour pressure of water at its normal boiling point, 373.15 K, evaluate
B.

(b) 10 g of water is introduced into an evacuated chamber of constant volume, V = 0.010
m3. At a temperature of 373.15 K, what will be the mass of liquid water in the chamber?
Assume the liquid density is constant (1 g cm−3). The molecular weight of water is 18 g
mol−1. You can use the ideal gas law for the water vapour where appropriate.

17. An experimental vapour pressure expression: ln(P/Torr) = 16255− 2501.8
T/K

. Calculate the latent
heat for the corresponding phase transition.
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Homework : Atkins Problem 6.2, Additional problem 6.18 [N.B. Pay attention: there are Exer-
cises, Problems, Theoretical problems and Addtitional problems . . . in the Atkins book]

2.8 Ideal mixtures
1. At 20°C the vapour pressures of pure n-octane and pure benzene are 2.66 kPa and 13.3 kPa,

respectively. To a close approximation these two compounds form ideal liquid and gaseous
mixtures.

(a) In what pressure range is a mixture of them, in which the mole fraction of benzene is
0.4, biphase in equilibrium?

(b) In what composition range is a mixture of them, which has a total vapour pressure of 6
kPa biphase in equilibrium?

2. The vapour pressure of a pure liquid A at 293 K is 68.6 kPa and that of the pure liquid
B is 82.1 kPa. These two compounds form ideal liquid and gaseous mixtures. Consider the
equilibrium composition of a mixture, in which the mole fraction of A in the vapour is 0.612.
Calculate the total pressure of the vapour and the composition of a liquid mixture.

3. Benzene and toluene form nearly ideal solutions. At 20°C the vapour pressures of pure benzene
and toluene are 22 Torr and 74 Torr, respectively. A solution consisting of 1.00 mol of each
component is boiled by reducing the external pressure below the vapour pressure. Calculate
the pressure when boiling begins, the composition of each component in the vapour, and the
vapour pressure when only a few drops of liquid remain. Assume that the rate of vaporization
is low enough for the temperature to remain constant at 20°C.

4. At 20°C the vapour pressure of pure A is 2.66 kPa and that of pure B is 13.3 kPa. The system
is ideal and zB = 0.4. In what pressure range form this mixture a biphase system?

5. It is found that the boiling point of a binary solution of A and B with xA = 0.4217 is 96°C
at 1 atm. At this temperature the vapour pressures of pure A and B are 110.1 kPa and 94.93
kPa, respectively.

(a) Is this solution ideal?
(b) What is the composition of the vapour when boiling begins?

6. Find the book called "Physico-Chemical Constants of Binary Systems" in the library and
draw a phase diagram based on real data. Label the diagram and try to assign it to one of
the types you have learned in the class.

7. Dibromoethene (DE) and dibromopropene (DP) form nearly ideal solutions. At 358 K, the
vapour pressures of pure DE and PE are 172 Torr and 128 Torr, respectively. A solution
consisting of 1.00 mol of each component is in equilibrium with its vapour. Assume that the
rate of vaporisation is low enough for the temperature to remain constant at 358 K.

(a) Calculate the equilibrium vapour pressure above the original liquid mixture.
(b) Calculate the equilibrium vapour pressure when only a little drop of liquid remains in

equilibrium with the (nearly) completely vaporised mixture.
(c) Calculate the equilibrium vapour pressure when half of the mixture is in the vapour

phase.

Homework : Atkins Exercise 8.4(a), 8.13(a),
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2.9 Phase diagrams
1. Diborane (B2H6, melting point 131 K) and dimethylether (CH3OCH3, melting point 135 K)

form a compound (CH3)2OB2H6 that melts at 133 K. The system exhibits one eutectic at
x(B2H6)=0.25 and 123 K, and another at x(B2H6)=0.90 and 104 K.

(a) Sketch the T vs x(B2H6) phase diagram of this system and label it with the name of the
appropriate compounds and phases. Indicate all known values in the graph.

(b) Sketch the cooling curves for the compositions x(B2H6)=0.25, 0.5 and 0.75. Assume that
the heat capacity of the liquid is greater than that of the solid. Indicate all known values
in the graph.

2. Two partially immiscible liquids (A and B) have an upper critical temperature of 89°C at
composition xB = 0.4, and a lower critical temperature of 17°C at composition xB=0.5. The
lowest and highest mole fractions where the mixture forms two phases are xb = 0.07 and
xB = 0.91, respectively, both at 52°C.

(a) Sketch the T–x phase diagram and label appropriate areas with the name of the phases.
Indicate all known values in the graph.

(b) Below xb = 0.07, the mixture can be considered as an ideal two-component mixture.
Calculate the composition of the vapour phase at xB = 0.05, if the vapour pressures of
pure A and B are 56.7 kPa and 120 kPa, respectively.

3. Consider the phase diagram, which represents a solid-liquid equilibrium.

(a) Indicate the number of species and phases present at the points/regions labelled a, b, c
and d.

(b) Sketch cooling curves for composition xA = 0.16 and 0.90 (put the appropriate temper-
atures on the vertical axes).

x
A

0 0.16 0.5 0.9

T

a .

b .
c .

d

T
1

T
2

B A

2.10 Colligative properties
1. The vapour pressure of benzene is 400 Torr at 60.6°C, but it fell to 386 Torr when 19.0 g of

an involatile organic compound was dissolved in 500 g of benzene. Calculate the molar mass
of the compound.

2. The osmotic pressure of an aqueous solution at 300 K is 120 kPa. Calculate the freezing point
of the solution.
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3. Calculate the molality of an aqueous solution, whose boiling point is 373.57 K at a pressure of
101068 Pa. (Water boils at 100.0°C at atmospheric pressure. 1 atm = 101 325 Pa, the molar
enthalpy of evaporation of pure water is 40.670 kJ mol−1, its density is 1.00 g cm−3.)

4. Water (Tf=0°C, Kf=1.86°C kg/mol) is not a very good substance to do accurate freezing point
depression measurements and hence to obtain the molality of a compound. If we want more
accurate measurements, camphor is an excellent solvent (Tf=179.8°C, Kf=40.0°C kg/mol).

(a) Why can we do more accurate measurements in camphor?

(b) For example, if the freezing point of a water solution of some substance is −0.186°C,
what is the freezing point of a camphor solution of the same molality?

5. Calculate the freezing point of a glass of water of volume 250 cm3sweetened with 7.5 g of
sucrose. The standard enthalpy of fusion of water is 6.008 kJ mol−1at the transition temper-
ature. The standard enthalpy of vaporization of water is 44.016 kJ mol−1near the standard
freezing point. The molar mass of sucrose is 342 g mol−1and that of water is 18 g mol−1. The
standard freezing point of water is 273.15K. Near the standard freezing point the enthalpies
can be considered independent of the temperature and the pressure.

Homework : Atkins Exercise 7.7(a), 7.16(b), 8.4(a), 8.8(a)

2.11 Molar quantities
1. The volume of an aqueous solution of NaCl at 25°C was measured at a series of molalities b,

and it was found that the volume fitted the expression

V/cm3 = 1003 + 16.62b + 1.77b3/2 + 0.12b2

where b is the volume of the solution formed from 1.000 kg of water and b is to be understood
as b/b
. Calculate the partial molar volume of the components in a solution of molality
0.100 mol kg−1.

2.12 Liquid surfaces
1. Calculate the work of creating a spherical cavity of radius r = 2 mm in a liquid of surface

tension γ = 427 mN m−1.

2. Two soap bubbles of different radii are blown on opposite ends of a tube with a stopcock in
the middle. When the stopcock is opened what happens to the radii of the bubbles? Write
down the equations your answer is based on and explain your answer with a few words.

3. We have a tube with two pipes containing water: the diameter of the first is 2 mm, the other
has a radius of 0.1 mm. What is the difference between the water level of the pipes? Assume
hemispherical surfaces. γ = 72.75 mN m−1, g = 9.81 m s−2.

4. A closed vessel contains two droplets of different size but of the same substance. What will
be the equilibrium size of the two droplets? Explain your answer.

5. Calculate the radius of a cavity, which is stable at 10 cm below the surface of water. The
surface tension of water is γ = 72.75 mN m−1, ρ = 1.0 g cm−3.
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6. A physical chemist drinking champagne observes a spherical cavity of r=0.2 mm in his glass.

(a) What is the pressure difference across the surface of the cavity? The surface tension of
champagne is 60.5 mN m−1.

(b) What is the pressure inside the cavity, if it is 10 cm deep below the level of the cham-
pagne? Assume ρchampagne = 1 g cm−3.

(c) After sipping from the glass, the cavity comes closer to the surface level of champagne
with 1 cm. Provided that the pressure inside remains constant, what is the radius of the
cavity?

(d) Calculate the work corresponding to the change of cavity surface from its initial value
to the value calculated in 6c.

7. The technician did not manage to pull a capillary with parallel sides, only a cone of an angle
of 5° (see figure).

(a) Give the capillary rise for water in the cone (γ = 7.275 · 10−2 Nm−1), if the bottom of
the capillary is the narrow edge, and the radius at the outer water level is 0.2 mm. As
a first approximation, assume a hemispherical surface. (ρwater = 1 g cm−3)

(b) Is the assumption valid? (Hint: calculate r at height h.)

2.13 Chemical equilibrium
1. Dinitrogen tetroxide is 18.46 per cent dissociated at 25°C and 1.00 bar in the equilibrium

N2O4(g) −−⇀↽−− 2NO2(g) . Calculate (a) K, (b) ∆rG

, (c) K at 100°C given that ∆rH


=57.2
kJ mol−1 over the temperature range.

2. In the gas-phase reaction 2A + B −→ 3C + 2D , it was found that, when 1.00 mol A, 2.00
mol B, and 1.00 mol D were mixed and allowed to come to equilibrium at 25°C, the resulting
mixture contained 0.90 mol C at a total pressure of 1.00 bar. Calculate (a) the mole fractions
of each species at equilibrium, (b) Kx, (c) K, and (d) ∆rG


.
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3. The standard reaction enthalpy of Zn(s) + H2O(g) −→ ZnO(s) + H2(g) is approximately
constant at 224 kJ mol−1 from 920 K up to 1280 K. The standard reaction Gibbs energy is
33 kJ mol−1 at 1280 K. Estimate the temperature at which the equilibrium constant becomes
greater than 1.

4. The equilibrium constant of the reaction 2C3H6(g) −→ C2H4(g) + C4H8(g) is found to fit
the expression

ln K = −1.04− 1088

T/K
· 1.51 · 105

(T/K)2

between 300 K and 600 K. Calculate the standard reaction enthalpy and standard reaction
entropy at 400 K.

5. What is the standard enthalpy of a reaction for which the equilibrium constant is (a) doubled,
(b) halved when the temperature is increased by 10 K at 298 K?

6. Estimate the temperature at which CaCO3 (calcite) decomposes.

7. The equilibrium constant for the reaction, I2(s) + Br2(g) −−⇀↽−− 2 IBr(g) is 0.164 at 25°C. (a)
Calculate ∆rG


 for this reaction. (b) Bromine gas is introduced into a container with excess
solid iodine. The pressure and temperature are held at 0.164 atm and 25°C. Find the partial
pressure of IBr(g) at equilibrium. Assume that all the bromine is in the liquid form and that
the vapour pressure of iodine is negligible. (c) In fact, solid iodine has a measurable vapour
pressure at 25°C. In this case, how would the calculation have to be modified?

8. The dissotiation vapour pressure of NH4Cl at 427°C is 608 kPa but at 459°C it has risen to
1115 kPa. Calculate for 427°C

(a) the equilibrium constant

(b) the standard reaction Gibbs energy

(c) the standard enthalpy of dissociation

(d) the standard entropy of dissociation

Assume that the vapour behaves as an ideal gas and that ∆rH

 and ∆rS


 are independent
of temperature in the range given.

9. The percentage (α) of dissociated CO2(g) into CO(g) and O2(g) at high temperatures was
found to vary as follows:
T/K 1395 1498
α/% 1.44 · 10−2 4.71 · 10−2

Assuming the standard reaction enthalpy to be constant over this temperature range, calculate
at both temperatures: the equilibrium constant, the standard Gibbs energy, the standard
reaction enthalpy and the reaction entropy.

10. Calculate the percentage change in the equilibrium constant Kx of the reaction

H2CO(g) −−⇀↽−− CO(g) + H2(g)

when the total pressure is increased from 1.0 bar to 2.0 bar at constant temperature.

11. The standard Gibbs energy of formation of NH3(g) is –16.5 kJ mol−1at 298 K.
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(a) What is the reaction Gibbs energy when the partial pressures of N2, H2 and NH3 (treated
as perfect gases) are 3.0 bar, 1.0 bar and 4.0 bar, respectively?

(b) What is the spontaneous direction of the reaction in this case?

2.14 Transport
1. A solid surface with dimensions 2.5 mm × 3.0 mm is exposed to argon gas at 90 Pa and

500 K. What is the collision frequency? How many collisions do the Ar atoms make with this
surface in 15 s? MAr = 39.95 g mol−1.

2. The space between two surfaces is filled with Ar gas at 25°C and 1.00 bar. The area of each
of the surfaces is 25 cm2, and the distance between them is 3 mm. One surface is at 35°C,
and the other is at 15°C. What is the heat flow between the two surfaces? κ = 1.75× 10−2 J
K−1s−1 and is independent of temperature in this region.

3. The body-temperature viscosity and density of human blood are 4 cP (centipoise) and 1.0 g
cm−3. The flow rate of blood from the heart through the aorta is 5 L/min in a resting human.
The aorta’s diameter is typically 2.5 cm. Find the pressure gradient along the aorta.

4. The times that a steel ball (ρball = 7.8 × 103 kg m−3) required to drop through water and
commercial shampoo were 1 s and 7 s, respectively. Given that the densities of water and
the shampoo are 1000 and 1030 kg m−3, respectively, find ηshampoo/ηwater. Assume that the
velocity of the ball is constant (true, if t →∞).

5. The diffusion coefficient of sucrose in water at 25°C is 5.2×10−6 cm2 s−1. What is the value
of the root mean distance after 1 day, if we pour some sugar into a glass and then add some
water very slowly and carefully (in order to avoid direct mixing) on the top?

6. In a spherical infinite diffusion scheme the root mean square distance travelled by a sulphate
ion (SO2 –

4 ) in water at 25°C in 250 minutes is 1 cm.

(a) What is the diffusion coefficient of SO2 –
4 in water at 25°C.

(b) What is the approximate hydrodynamic radius of SO2 –
4 in water at 25°C if the viscosity

of water at this temperature is 0.891 cP.

(c) Calculate the concentration of SO2 –
4 after 250 min at a distance of 1 cm from the centre

if 0.1 mmol of SO2 –
4 was in the centre initially. (Diffusion-potential has been eliminated.)

(d) What is the mobility of SO2 –
4 in water at 25°C?

(e) Calculate the concentration gradient of SO2 –
4 and the thermodynamic force acting on a

single sulphate ion at the time and position defined under point 6c.

(f) Derive the (time-dependent) curvature of the spatial concentration profile of SO2 –
4 at

25°C using Fick’s 2nd law.

7. The viscosity of a chlorofluorocarbon (CFC) was measured by comparing its rate of flow
through a long narrow tube with that of argon. For the same pressure difference, the same
volume of the CFC passed through the tube in 72.0 s, and that of argon in 18 s. The viscosity
of argon at 25°C is 208 µP. What is the viscosity of the CFC? MCFC=200 g mol−1.
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3. Constants and relations

3.1 Constants and unit conversion
R = 8.314 J

molK
NA = 6.022 · 1023 k = 1.38 · 10−23 J K−1 g = 9.81m s−2

1P 1 = 0.1Pa s−1 1 atm = 101325 Pa 1 bar = 105 Pa

3.2 Relations
internal energy of monatomic ideal gas: U = 3

2
NRT of diatomic: U = 5

2
NRT

ideal gas law: PV = NRT

dU =đW+ đQ quasi-static work: đW = −P dV quasi-static heat: đQ = T dS

Carnot efficiency: η = 1− Tc

Th

dU = T dS − P dV +
∑

i µi dNi dS = 1
T

dU + P
T

dV −∑
i

µi

T
dNi

Gibbs-Duham relations: S dT − V dP +
∑

i Ni dµi = 0 U d 1
T

+ V dP
T
−∑

i Ni d
µi

T
= 0

enthalpy: H = U + PV free energy: F = U − TS Gibbs energy: G = U − TS + PV

Gibbs-Helmholtz equation: H =
(

∂(G/T )
∂(1/T )

)
P

Maxwell relations (Valid Facts and Theoretical Understanding Generate Solutions to Hard Problems)

PHS

GU

TFV

(
∂µ
∂T

)
P

= −s
(

∂µ
∂P

)
T

= v

isobaric coefficient of thermal expansion: α ≡ 1
V

(
∂V
∂T

)
P

1 Poise



isothermal compressibility: κT ≡ − 1
V

(
∂V
∂P

)
T

adiabatic compressibility: κs ≡ − 1
V

(
∂V
∂P

)
S

heat capacity at constant pressure: cP ≡ T
N

(
∂S
∂T

)
P

= 1
N

(
∂Q
∂T

)
P

heat capacity at constant volume: cv ≡ T
N

(
∂S
∂T

)
V

= 1
N

(
∂Q
∂T

)
V

cP = cv + TV α2

NκT
κT = κs + TV α2

NcP

dP
dT

= ∆trsS
∆trsV

Clapeyron equation: dP
dT

= ∆meltH
T∆meltV

external pressure effect on vapour pressure: P = P ∗evf∆P/RT ≈ P ∗
(
1 +

vf∆P

RT

)

Clausius-Clapeyron equation: dP
dT

=
∆vap/sublHp

RT 2 or: d ln P
dT

=
∆vap/sublH

RT 2

Gibbs phase rule: F = C − P + 2

barometric formula: P = P0e
−Mgh/RT

∆rG

 = ∆rH


 − T∆rS

 ∆rG


 = −RT ln K
∑

j Njdµj = 0 Q =
∏

j a
νj

j

van’t Hoff equation: d ln K
dT

= ∆rH

RT 2 or: d ln K

d(1/T )
= −∆rH


R

(
∂K
∂P

)
T

= 0

∆mixG
ideal = NRT

∑
j Nj ln xj

excess thermodynamic functions: GE = ∆mixG−∆mixG
ideal SE = ∆mixS −∆mixS

ideal

chemical potential of ideal solution: µA = µ
A + RT ln PA

Raoult’s law: PA = xAP ∗
A Henry’s law: PA = KAP ∗

A

liquid composition: P = xAP ∗
A + xBP ∗

B vapour composition: 1
P

= yA

P ∗A
+ yB

P ∗B

freezing point depression: ∆T = Kfb = RT ∗2
∆fusH

xB boiling point elevation: ∆T = Kbb = RT ∗2
∆vapH

xB

osmotic pressure: Π = cRT (1 + Bc + . . .)

partial molar volume: Vj =
(

∂V
∂Nj

)
P,T,N

V =
∑

j NjVj

Laplace equation: Pconcave = Pconvex + 2γ
r

capillary action: h = 2γ
ρgr

cos Θ

work done to create surface: dw = γ dσ contact angle: γsg = γsl + γlg cos Θ

hydrostatic pressure: P = ρgh Kelvin equation: P = P ∗ · e2γVm/rRT

collision flux: Zw = P
(2πmkT )1/2

Fick’s first law: Jmatter = −D dc
dz

energy flux: Jenergy = −κdT
dz

momentum flux: JIx = −η dvx

dz
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Fick’s second law: ∂c
∂t

= D ∂2c
∂x2

Poisuille equation for liquids: dV
dt

= (P1−P2)πr4

8lη
for gases: dV

dt
=

(P 2
1−P 2

2 )πr4

16lηp0

diffusion in 1D: c(x, t) = N0

2A(πDt)1/2 e
−x2/4Dt semi-1D: c(x, t) = N0

A(πDt)1/2 e
−x2/4Dt

in 3D c(r, t) = N0

8(πDt)3/2 e
−r2/4Dt

root mean square distance, 1D: 〈x2〉1/2 =
√

2Dt 2D: 〈ρ2〉1/2 =
√

4Dt 3D: 〈r2〉1/2 =
√

6Dt
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