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Abstract

A five-parameter modified logistic equation is presented that describes the signal enhancement in magnetic resonance dynamic contrast
enhanced imaging (MRI-DCE). In this heuristic model, P1 approximates the baseline signal, P2 is related to the magnitude of the peak signal
enhancement, P3 is the approximate time of the maximum rate of increase of signal, P4 is related to the maximum rate of signal
enhancement, and P5 is the terminal slope of the signal enhancement curve. Six breast tumors were studied that exhibited diverse patterns
of signal enhancement, and in each case, estimated model parameters were well identified. Three of the model parameters, P2, P4 and P5

describe attributes of the signal enhancement curve that have previously been shown to have diagnostic value with respect to breast cancer.
Procedures for using the primary model parameters to derive a number of secondary parameters that may also have diagnostic value are
discussed. Sensitivity analysis shows that the signal enhancement curve is highly sensitive to P3 in the region of the signal intensity curve
associated with rapid uptake of the contrast reagent. Consequently, frequent signal sampling in this time domain is indicated to enable
identification of P3 and sensitive fitting of the signal intensity curve. The advantages of this heuristic model compared to commonly used
compartmental modeling approaches are discussed. © 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In the last decade there has been increasing use of MRI
contrast reagents (CR) such as gadolinium-diethylene-tri-
amine penta-acetic acid (Gd-DTPA) for the dynamic imag-
ing of a variety of tumors [1–6]. In tandem with the tech-
nological advances that have enabled the acquisition of
large quantities of dynamic MRI data, researchers have
developed a plethora of techniques to analyze such data.
Analytical approaches have been classified by Tofts as be-
ing either compartmental models or heuristic models [7].
According to Tofts, all compartment models employ a com-
partment to represent the blood plasma, a compartment to
represent the (abnormal) extravascular extracellular space
(EES), and rate constants that describe known physiological
processes. Tofts asserts that all compartment models mea-
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sure combinations of three parameters: (1) kPSp the influx
volume transfer constant (min�1), sometimes designated the
permeability surface area product per unit volume of tissue,
between plasma and EES; (2) ve the volume of EES per unit
volume of tissue (0 � ve � 1); and (3) kep, the efflux rate
constant (min�1), which is the ratio of the first two param-
eters (kep � kPSp/ve). A number of variations on this basic
theme including a Flow-limited (High Permeability) model,
a Permeability-Limited Model, a Mixed Flow and Perme-
ability-Limited Model, a Clearance Model, and a General-
ized Kinetic Model have been described [8]. Many assump-
tions are built into these compartmental models, including
the main assumption that the parameters derived from the
models do indeed describe the nominated physiological
processes [7,9,10]. However, in some tumors there is an
initial rapid uptake of contrast reagent, followed by a less
steep but prolonged uptake of the contrast reagent. Simple
compartmental models can describe this type of tumor by
employing a negative value for k . However, it is not
ep



468 P.J. Moate et al. / Magnetic Resonance Imaging 22 (2004) 467–473
physiologically possible for intercompartmental rate con-
stants to have negative values [9,11]. To overcome these
types of difficulties, other researchers have developed mod-
els in which the tumor is described by up to three compart-
ments, and the investigator must select from five different
compartmental models/topologies the model that will best
describe the tumor under investigation [12]. Clearly, such
an experimental/arbitrary approach does not facilitate auto-
matic classification of tumors as benign or malignant. Fur-
thermore, compartmental analysis generally ignores delay
and dispersion effects and imposes a set of unsubstantiated
assumptions that may obscure interpretation [8,13].

In contrast to the compartmental model approach, heu-
ristic models make no assumptions or inferences about the
underlying physiology of a tumor, but simply attempt to
describe the important features or attributes of the uptake of
CR by the tumor. Such heuristic parameters include: (1)
baseline signal intensity, (2) rate of enhancement, (3) time
to peak enhancement, (4) peak enhancement, and (5) termi-
nal slope. Heuristic models focus on parameters 2–5 be-
cause these have been implicated in aiding the diagnosis of
malignant tumors [14].

Heuristic models vary greatly in their level of sophisti-
cation and mathematical form. Some researchers [2,15–17],
have carried out simple ‘manual’ arithmetic manipulations
of the raw data and defined signal indices such as “baseline
signal intensity” as “the average of 4 pre-contrast data
points” and “% enhancement (E%) after 60 as:

E% �
S60 � S0

S0
�100 (1)

where S0 and S60 are, respectively, the signal intensities at
baseline and at 60 s after administration of contrast agent.
Other researchers have used a variety of mathematical equa-
tions, including gamma functions, to describe the signal
intensity curves [18,19].

Regardless of the type of analysis of signal intensity
curves, the ultimate aim is generally to use the information
embedded in these curves to improve the differential diag-
nosis of malignant and benign tumors. Manual data analysis
may introduce unintended user bias. Gamma functions may
not have the flexibility to describe all observed signal en-
hancement patterns.

The standard logistic function [Eq. (2)] has many of the
features of a signal intensity curve since it describes a
sigmoid curve with a horizontal plateau:

SI�t� �
P2

{1 � exp� � P4 · �t � P3��}
� P1 (2)

where SI(t) is the signal intensity at time t, P1 approximates
the baseline signal intensity, P2 is the amplitude of the
plateau above the baseline, P3 (s) is the time at which the
maximum slope occurs and P4 (s�1) is the maximum slope.
Although Eq. (2) could perhaps describe the signal enhance-
ment of some specific benign tumors, it could not describe
the typical wash-out pattern of malignant tumors where the
terminal slope is quite negative, nor could it describe some
types of benign tumors where the terminal slope is persis-
tently positive. However, modification of the standard lo-
gistic equation by the inclusion of additional structure (P5 ·
t) provides the flexibility to describe signal intensity curves
with either increasing or decreasing terminal slope [Eq. (3)]:

SI�t� �
P2 � �P5 · t�

�1 � exp� � P4 · �t � P3���
� P1 (3)

where P1, is as defined as for Eq. (2) and P5 (s�1) is the
terminal slope. In this case, as can be deduced from Eq. (3)
and Fig. 1, P2 is equivalent to the signal intensity obtained
at the intersection of the zero time signal axis and a tangent
drawn from the terminal portion of the signal intensity
curve, minus the baseline signal intensity. From Fig. 1 it can
also be seen that the time P3 now only corresponds to the
time of maximum slope if P5 is equal to zero. However, if
P5 is greater or less than zero, P3 and P4 will now only
approximate to the time of maximum slope and the maxi-
mum slope, respectively.

This contribution describes how the modified logistic
function described in Eq. (3) above can be used to accu-
rately describe and quantify a diverse range of patterns of
Gadolinium dynamic-enhancement signal intensity curves.

2. Methods

2.1. Instrumentation and imaging protocol

Approval from our Institutional Review Board was ob-
tained prior to the start of this study. Dynamic MRI was
performed on six subjects whose breast lesions or tumors
had, by microscopic examination, been diagnosed as carci-
noma, fibroadenoma or benign proliferative changes. MR
imaging was performed on a 1.5-T Signa scanner (General
Electric Medical Systems, Milwaukee, WI, USA). After
informed consent, patients were placed in the scanner in the
prone position, with the breast to be imaged gently com-
pressed within a four-coil array. The contrast-enhanced im-
ages were acquired using a fast 3D spoiled gradient-recalled
(TR/TE, 9/4; flip angle � 45°; 	 64 kHz sampling band-
width, 24 cm field-of-view, 3-mm slice thickness) back-
projection sequence using 512 data samples/projection with
384 projections, and 26 slices [20]. The projection angles
were interleaved so that an image volume was reconstructed
with a temporal resolution of 
15 s. A baseline volume was
acquired followed by dynamic imaging started simulta-
neously with the intravenous injection of 20 mL of gado-
pentetate dimeglumine (Magnevist, Berlex Laboratories,
Wayne, NJ, USA). Contrast was administered over a 10-s
interval and followed by a saline flush. Data were acquired
over the following 5-min period.
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2.2. Analysis of MR imaging data

The MRI data from each region of interest in each tumor
in each patient were analyzed as follows. P1 was calculated
as the mean signal intensity of the first eight data. The
remaining parameters in the modified logistic model were
estimated by means of non-linear regression using STATA
[21] and WinSAAM (which can be downloaded from http://
www.WinSAAM.com) [22]. A number of additional pa-

Fig. 1. (a) A schematic showing the derivation of the parameters of the
modified logistic model from the dynamic signal intensity curve SI(t)
obtained during a magnetic resonance examination of a breast tumor. P1

represents the baseline signal, P5 is the terminal slope (sec�1), P2 is
equivalent to the a signal intensity obtained at the intersection of the zero
time signal axis and a tangent drawn from the terminal portion of the signal
intensity curve, minus P1; P3 (sec) is the time of the maximum slope and
P4 (sec�1) is the maximum slope. (b) A schematic showing derivation of
maximum slope (MS), signal enhancement at maximum slope (SEMS),
beginning of second phase (BSP), end of second phase (ESP) and width of
response (WOR). SI(t) is the Signal Intensity at time (t), while dSI(t)/dt and
d2SI/dt2 are the first and second derivatives. Note, SI(t) and its first and
second derivative depicted below have been rescaled to enable concurrent
display. MS is depicted by the line MS-----MS.
rameters were derived from the parameters of the modified
logistic equation. Since the signal intensity at maximum
slope (SIMS) can be approximated by:

SIMS �
�P2 � P3*P5�

2
(4)

and the signal enhancement at maximum slope (SEMS) was
calculated by SIMS minus P1.

The maximum slope (MS) (sec�1) itself was estimated
by:

MS �
P2*P4

4
(5)

The time of the beginning of the second phase (BSP) (sec)
and the time of the end of the second phase (ESP) (sec) of
the response signal were identified by determining when the
maximum and minimum values occurred for the second

derivative of the modified logistic equation �d2SI

dt2 � (see Fig.

1b). The second phase of the MRI signal curve is essentially
a period when the MRI signal intensity increases in an
approximately linear fashion. The width of the response
(WOR) (sec) was calculated as the difference between ESP
and BSP. The primary signal response (PSR) was calculated
as the signal intensity at ESP minus P1. The areas under the
curve (in seconds), above the baseline signal intensity, be-
tween time zero and time 420 s (AUC420) and also between
BSP and ESP (AUCBE) were determined using WinSAAM.
WinSAAM was also used to carry out sensitivity analyses to
determine the relative dependency of SI(t) on each of the
principal model parameters [23]. All other post imaging
calculations were made using STATA.

3. Results and Discussion

Dynamic signal intensity data and the ‘best fit’ time
versus signal intensity curves as predicted by the modified
logistic equation, for a variety of signal patterns are shown
in Fig. 2. The primary and secondary parameters of the
modified logistic model along with their fractional standard
deviations for these same six lesions are shown in Table 1
The versatility/flexibility of the modified logistic model is
shown by the fact that it was able to well describe the
variety of signal patterns shown in Fig. 2 with all adjusted
R2 values greater than 0.99. With the exception of param-
eter P4 for the curve shown in Fig. 2d, all parameters were
well identified. Although the curve shown in Fig. 2d has an
atypical shape, the modified logistic equation was still well
able to describe this curve. Even for the curve shown in Fig.
2e, where data were particularly noisy, the model was able
to identify the parameters of the model. The robustness of
the model is further exemplified by the curve shown in Fig.
2f, where all model parameters were identified, even pa-
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rameter P4, despite the fact that there was only one datum
where the signal intensity curve was steeply rising.

The signal intensity curve shown in Fig. 2a was from a
benign tumor identified as a fibroadenoma with proliferative
fibrocystic changes without atypia. The P2 and P4 parame-
ters for this curve were relatively small, while P5 was
substantial and positive (Table 1). The curve shown in Fig.

Fig. 2. Signal intensity versus time (secs) curves from six breast tumors: (
infiltrating and in situ ductal carcinoma; (c) infiltrating ductal carcinoma;
signal intensity axis has been rescaled to better display the goodness of fi
2e was also from a benign tumor (fibroadenoma). Parame-
ters of the curves shown in Fig. 2a and 2e typify those for
benign tumors. The curve shown in Fig. 2b was from an
infiltrating and in situ ductal carcinoma and the curves
shown in Fig. 2c and 2f were also from cancerous tumors.
In contrast to the benign tumor parameters, the P2 and P4 for
the cancerous tumors shown in Fig. 2b, 2c and 2f are

n fibroadenoma with proliferative fibrocystic changes without atypia; (b)
nocarcinoma; (e) benign fibroadenoma, (f) cancer. Note, in each case, the
h curve.
a) benig
(d) ade
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relatively substantial and positive, while the P5 parameter is
either close to zero or substantially negative. The unusual
shape of the curve shown in Fig. 2d is due to the substantial
negative value (�48) for parameter P2. Because we have
not encountered many curves of this shape we are unable to
say if this shape of curve has diagnostic value, nor can we,
at this stage, suggest a physiological explanation for this
type of curve.

3.1. Secondary parameters

Some researchers have advocated using a variety of
secondary diagnostic parameters derivable from the signal
intensity curve. These include: presence or absence of en-
hancement, maximum slope (MS), maximum amplitude,
enhancement at 1 min, etc. [24]. These are all derivable
from the modified logistic function. Indeed, the modified
logistic equation approach enables the secondary parame-
ters shown in Table 1, to be derived in a more mathemati-
cally rigorous and accurate manner than similar heuristic
parameters that others have derived manually [2,15–17].
For example, in Table 1, the MS parameter was well iden-
tified for all tumors except for the tumor with the atypical
signal response curve shown in Fig. 2d. The same can be
said for the signal enhancement at the maximum slope
(SEMS). The remaining secondary parameters shown in
Table 1 are generally well identified for all of the tumors
shown. It can be seen in Fig. 1b that the BSP parameter is
related to the time at which the period of linear uptake of
contrast agent in the tumor begins. In our case, the absolute
magnitude of BSP is somewhat arbitrary since it includes
the time (98 s) for eight pre-injection signal-capturing
events. BSP may also be susceptible to delays associated
with inadvertently long injection protocol, asynchrony in

Table 1
Model parameters, their standard deviations, Model R2 and RMSE as wel

Case a b

Pathology Benign Cancer

Primary parameters
P1 44 	 2.6 31 	 2.7
P2 27 	 6.9 90 	 3.6
P3 (sec) 141 	 3.3 152 	 1.2
P4*10�2 (sec�1) 4.8 	 0.56 9.0 	 0.80
P5*10�2 (sec�1) 41 	 2.1 2 	 1.2
Ra

2 0.9991 0.9991
RMSE 4.63 3.18
Secondary parameters

MS (sec
�1

) 0.3 	 0.06 2.0 	 0.16
SEMS 43 	 2.5 47 	 1.0
PSR 84 	 1.9 74 	 1.5
BSP (sec) 120 	 2.0 137 	 1.7
ESP (sec) 176 	 3.5 167 	 1.2
WOR (sec) 56 	 4.0 30 	 2.1
AUCBE (sec) 2931 	 272 1414 	 98
AUC420*104 (sec) 4.0 	 0.17 2.6 	 0.03

NC � not calculable
timing the injection and re-starting the MRI capturing se-
quence, variation in the timing and duration of the saline
flush and phenomena unassociated with the tumor, such as
individual patient blood-flow dynamics. Nevertheless, as
would be expected and as can be seen in Table 1, BSP is
inversely correlated with P4. In contrast to BSP, WOR
should not be influenced by asynchrony in timing the injec-
tion with re-starting the MRI capturing sequence or pre-
tumor blood dynamics and should therefore be more closely
influenced by the uptake of contrast agent by the tumor.
Indeed, from Table 1 it is clear that WOR is inversely related
to the magnitude of P4. From Table 1, cases “a” and “e”,
which were benign tumors, had the greatest and smallest
AUC420, respectively; so this parameter does not appear
useful for diagnostic purposes. Similarly, AUCBE does not
offer diagnostic potential. Thus, although secondary param-
eters may correspond to some specific attributes of the
signal intensity curve, the primary parameters are more
appropriate for diagnostic purposes because they contain, in
a succinct form, all of the information embedded in the
signal intensity curves.

3.2. Standardization

In this exploration of MRI signal intensity curves, we
have modeled the raw signal obtained from the MRI scan-
ner. In contrast, some researchers first transform the signal
before they attempt to extract signal attributes. For example,
some researchers transform the signal in this fashion [9,25]:

SI * �t� �
SI�t�

P1
(6)

where SI*(t) is the transformed signal. Other researchers
transform the signal slightly differently [5,26]:

ondary parameters for the cases shown in Fig. 2

d e f

er Cancer Benign Cancer

1.4 48 	 1.3 75 	 1.2 27 	 3.0
3.6 �48 	 1.8 15 	 5.2 65 	 2.3
2.1 109 	 3.7 183 	 18.2 121 	 1.2
1.58 24.5 	 18.9 2.7 	 0.62 28.1 	 6.16
1.2 32 	 0.6 �1 	 1.4 �6 	 0.8

9988 0.9991 0.9997 0.9981
39 2.58 1.57 3.05

0.23 �2.7 	 13.05 0.1 	 0.02 4.5 	 0.70
1.0 �7 	 4.0 7 	 1.4 28 	 0.5
0.8 �9 	 2.0 11 	 0.6 44 	 2.0
2.9 102 	 1.1 137 	 5.7 116 	 6.2
2.0 114 	 12.0 228 	 13.9 125 	 6.3
3.5 12 	 12.1 90 	 15.0 9 	 8.8
91 �67 	 NC 650 	 114 256 	 44
0.03 1.1 	 0.03 0.3 	 0.03 1.5 	 0.02
l as sec

c

Canc

61 	
69 	

145 	
9.7 	
�9 	

0.
3.

1.7 	
28 	
42 	

131 	
158 	

27 	
722 	
1.2 	
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SI * �t� �
SI�t� � P1

P1
(7)

If the system describing Gadolinium kinetics is linear, then
such transformations should have little effect on the shape
of the signal response curve. Indeed, if the transformation
shown in Eq. (6) is carried out, then SI*(t) can be expressed
as follows:

SI * �t� �
P*2 � �P*5 · t�

�1 � exp� � P4 · �t � P3���
� P*1 (8)

where P*1 equals 1, P*2 equals
P2

P1
, P*5 equals

P5

P1
and P3 and

P4 are as defined for Eq. (3).
If the transformation shown in Eq. (7) is employed, Eq.

(8) also applies, but in this case P*1 equals 0. Thus, in either
case, the modified logistic equation can still be used to
describe SI*(t). In contrast to the above standardization
procedures, Port et al. [12] used a complex compartmental
model in which “tumor scale parameters were standardized
by dividing them by the ratio of individual aorta scale
parameter, GA, over the mean population aorta scale param-
eter in order to eliminate the effect of inter-individual vari-
ability in V1”. In the Port et al. model, V1 represents a
central compartment (blood plasma). Such a transformation
as advocated by Port et al. is likely to lead to loss of
information. Nevertheless, no matter the manner in which
individual researchers transform the MRI signal, the modi-
fied logistic model presented here has the flexibility to fit
such curves.

Some researchers inject the CR over a short time (10 to
30 s) [27] and others infuse the CR over longer periods
ranging from 1 to 4 min [9, 12]. Thus, the duration of the
injection or infusion may coincide with a substantial part of
the period when the CR is being taken up by the tumor. The
parameter describing the uptake of CR can therefore be
greatly influenced by the infusion protocol. In the compart-
mental approach advocated by many researchers [5,9], the
MRI signal or a transformed version of it, is modeled after
t0 where t0 is the time of the injection. With respect to the
compartmental model approach, one immediately obvious
difficulty is the choice of what constitutes time zero. The
researcher must decide if it is the beginning, middle or end
of the injection/infusion period. This somewhat arbitrary
decision will clearly impact greatly on the magnitude of
estimated uptake rates as calculated by the compartmental
approach. In contrast, by using the heuristic approach/mod-
ified logistic equation, it can be shown that the time of the
injection has little impact on P4 (the primary parameter
describing the uptake of CR), but that the potentially con-
founding effect of time of injection as well as delay and
dispersion effects are accommodated by the nuisance pa-
rameter P3 [13]. However, the importance of P3 to the
global fitting of the heuristic model to data should not be
ignored. For example, comparative sensitivity analysis of
SI(t) with respect to parameters P2, P3, P4 and P5 for tumor
‘b’ (see Fig. 3a and 3b) demonstrates that in a relative sense,
SI(t) is most sensitive to changes in P3 when SI(t) is most
rapidly increasing, and that in order to accurately estimate
P3, and fit the model to the data, frequent sampling is
indicated in this time domain.

4. Conclusion

In conclusion, the heuristic model presented here has the
flexibility to accurately describe all of the MR signal en-
hancement patterns that we have encountered. The heuristic
model has five primary parameters, but three of these: P2, P4

and P5 appear to describe the principal attributes of the
signal enhancement curve that other researches have shown
to have diagnostic/prognostic value. The parameters of the
heuristic model can be used to accurately estimate a number
of secondary parameters that have previously also been
shown to have diagnostic value.
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