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1. Introduction

Chemical applications of deconvolution started in the early thirties of the 20th century to sharpen convolved experimental spectral lines1. With the development of chromatography, deconvolution methods have also been used essentially for the same purpose, to get a better resolution of components.2-3 The need for deconvolution also emerged in the evaluation of pulse radiolysis, flash photolysis and later laser photolysis results, when studied kinetic processes were so fast that reaction times were comparable to the temporal width of the pulse or lamp signals4. However, the aim of deconvolution in these kinetic applications was not a sharpening of the signal, but the exact reconstruction of a distortion-free kinetic response function. A number of methods have been used ever since to get the deconvolved kinetic signals in different applications.5-8 With the availability of ultrafast pulsed lasers, femtochemistry has been developed9, where the time resolution enables the very detection of the transition state in an elementary reaction. Due to several limiting factors, applied laser pulses have typically a temporal with which is comparable to the characteristic time of many interesting elementary reactions. As a consequence, convolution of the measured kinetic signal with the laser pulses used is an inevitable source of signal distortion in most femtochemical experiments.
In previous publications10-12, we have dealt with several classical methods of deconvolution either based on inverse filtering via Fourier transformation, or on different iterative procedures. Methods reported in these papers resulted in a quite good quality of deconvolution, but a sufficiently low level of noise in the deconvolved data could only have been achieved if some smoothing was also used, which in turn introduced a small bias due to the lack of high frequency components as a consequence of additional smoothing. Though this phenomenon is quite common when using classical deconvolution methods, it makes subsequent statistical inference also biased. As it has been stated, an appropriate use of ad hoc corrections based on the actual experimental data can largely improve the quality of the deconvolved data set by diminishing the bias. This experience led us to explore the promising group of genetic algorithms, where the wide range of variability of operators enables specific “shaping” of deconvolution results.
In this paper we describe the application of a modified genetic algorithm that we successfully use for nonparametric deconvolution of femtosecond kinetic traces. Though genetic algorithms are not widely used for deconvolution purposes yet, they are rather promising candidates to be used more frequently in the near future. The few applications in the literature include image processing13-15, spectroscopy16-17, chromatography18-20, and pharmacokinetics21.
  The rest of the paper is organised as follows. In the next chapter, we briefly explain the details of the procedure of ultrafast laser kinetic measurements leading to the detected convolved kinetic traces. In Chapter 3 we outline the mathematical background of nonparametric deconvolution and summarise previous results and their shortcomings in the deconvolution of transient kinetic signals. In Chapter 4 we describe the implementation of the genetic algorithm used. Chapter 5 gives details of results obtained deconvolving simulated and experimental femtochemical data, followed by a summary in Chapter 6.
2.  Convolution of the detected femtosecond pump-probe signals

A detailed description of the most typical kinetic experiment in femtochemistry – the pump-probe method – can be found in a previous publication.12 Here we only give a brief formulation of the detected transient signal. The pump pulse excites the sample proportional to its intensity Ig (t) at a given time t. As a consequence, the instantaneous kinetic response c(t) of the sample will become the convolution:
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where x is a dummy variable of time dimension. The pump pulse is followed after a delay τ – controlled by a variable optical path difference between the two pulses – by the probe pulse 
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if there is no excitation by the pump pulse prior to the probe pulse. The intensity of the pump pulse diminishes while propagating within the excited sample according to Beer’s law:
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where A = ε l ln 10, ε being the decadic molar absorptivity of the species that has been formed due to the pump pulse, and l is the path length in the sample. If the exponent A cg (t) is close to zero, the exponential can be replaced by its first-order Taylor polynomial 1 – A cg (t), with a maximum error of (A cg (t))2 / 2. The detector – whose electronics is slow compared to the sub-picosecond pulse width – measures a signal which is proportional to the time-integral of  the pulse, so the detected reference signal (before excitation) is
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while after excitation, it is
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The output of the measurement is the so-called differential optical density, which makes the proportionality constant K cancel:
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Let us substitute cg (t) from Eq. (1) into the above expression:
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Rearranging and changing the order of integration, we get
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Let us rewrite this equation by inverting the time axis of both the pump and the probe pulses according to
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which corresponds physically to change the direction of time without changing the direction of the delay. Substituting these functions into Eq. (8), we get
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Introducing variable
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As the correlation of two functions f and g can be written as
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we can rewrite Eq. (11) in the form
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which is a convolution:
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In this latter expression, the correlation of the inverted time axis pump and probe functions is the same, as the correlation of the original pump and probe (usually called as the effective pulse or instrument response function, IRF), while the transient kinetic function to be determined is (ε l ln 10) c. If there are more than one transient species formed due to the excitation absorbing at the probe wavelength, we should sum the contributions of all the n absorbing species writing 
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 in place of ( lc. In case of fluorescence detection, the fluorescence signal is proportional either to the absorbed probe pulse intensity that reexcites the transient species, or to the gating pulse intensity. As a result, the only difference to Eq. (14) is the appearance of a proportionality constant.

Introducing the notation of image processing, let us denote the instrument response function as the spread s, and the transient kinetic function the object o. The image i is the detected (distorted) differential optical density. Hereafter we use the equation equivalent to Eq (14) in the form
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which represents the integral equation
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to describe the detected transient signal.
In the case of elementary reactions, which are typically complete within a picosecond, the pump pulse that excites the precursor of the reagent to start the reaction has a pulse width comparable to the characteristic time of the reaction. This is due to the uncertainty relation which sets a limit to the temporal width of the pulse if we prescribe its spectral width.22 The narrow spectral width is necessary for a selective excitation and detection of the chosen species. The usual spectral width of about 5 nm in the visible range corresponds to about 100 fs transform limited (minimal) pulse width. This means that elementary reactions having subpicosecond characteristic times are usually heavily distorted by the convolution described above. That’s why it is necessary to deconvolve most of the femtochemical transient signals while performing a kinetic interpretation of the observed data.
3.  deConvolution of transient signals

In an actual measurement, a discretized data set im is registered with some experimental error. (Even if there weren’t for these errors, numerical truncation by the A/D converter would result in rounding errors.) To get the undistorted kinetic data set om, we should know the spread function s or the discretized sm data set and solve the integral equation (16). The problem with solving it is that it has an infinite number of (mostly spurious) solutions, from which we should find the physically acceptable unique undistorted data set. Though there exist many deconvolution methods, they typically treat strictly periodic data (whose final datum is the same as the first one), and give at least slightly biased deconvolved data due to the necessary damping of high frequency oscillations that occur during deconvolution.12, 22 A widely used method to circumvent ambiguities of deconvolution is to use the convolved model function to fit the experimental image data, thereby estimating the parameters of the photophysical and kinetic model; which is called reconvolution. Apart from the fact that many reactive systems are too much complicated to have an established kinetic model (e. g. proteins or DNA), the inevitable correlation between pulse parameters and kinetic parameters also introduces some bias in the estimation, which can be avoided using nonparametric deconvolution prior to parameter estimation.
In a previous publication12 we thoroughly investigated several classical deconvolution methods used in signal processing, image processing, spectroscopy, chromatography and chemical kinetics. We have successfully applied inverse filtering methods (based on Fourier transforms) using additional filters and avoiding the problem of non-periodicity of data sets. We have found that iterative methods can also be well adapted to deconvolve femtosecond kinetic data. Synthetic data sets were analysed and parameters of the model function obtained from estimation using the deconvolved data were compared to the known parameters. The analysis has shown that reliable kinetic and photophysical parameters can be obtained using the results of the best performing deconvolution methods. Comparing estimated parameters to those obtained by reconvolution – where the information provided by the knowledge of the true model function was used during the virtual deconvolution –, it turned out that there was a smaller bias present in the parameters obtained after model-free deconvolution than in the reconvolution estimates. This supports that a model-free deconvolution followed by fitting the known model function to the deconvolved data set effectively diminishes the bias in most estimated parameters. The reason for this is that using reconvolution, there is a need for an additional parameter, the „zero time” of the effective pulse, which increases the number of degrees of freedom in the statistical inference and introduces additional correlations within the estimated parameters, thus enabling an extra bias.
Despite of the mentioned qualities of model-free deconvolution, there was always an inevitable bias present in the deconvolved data set. To avoid noise amplification in the deconvolution operation, some noise-damping was necessary, which in turn resulted in an amplification of low-frequency components in the signal. Optimal results were obtained by a trade-off between noise suppression and low-frequency distortion. It was obvious from the results that sudden stepwise changes of the transient signal cannot completely be reconstructed using the methods explored. Improvement could be made to diminish this bias by using ad hoc corrections which made use of specific properties of actual image functions, using appropriate constraints in the deconvolution. The need for specific constraints suggested to try genetic algorithms (GAs) for model-free deconvolution. GAs are very much flexible with respect to the use of genetic operators that could treat many specific features of different transient shapes.
4.  deConvolution using genetic algorithms

The idea of using genetic algorithms for mathematical purposes came from population genetics and breeding sciences. It has been first used and thoroughly investigated by Holland24, and slowly gained a wide variety of different applications, also in the field of optimization. There are comprehensive printed monographs25, 26 as well as easy-to-read short introductions available on the web27 to read about the basic method and its variants. We only summarise here the very basics before describing its use for deconvolution and the actual implementation we use.
The solution of a problem is represented as an “individual”, and a certain number of individuals form a population. The fitness of each individual is calculated which measures the quality of the solution. Individuals with high fitness are selected to mate, and reproduction of individuals is done by crossover of these parents, thus inheriting some features from them. After crossover, each offspring has a chance to suffer mutation, and then the new generation is selected. Less fit individuals have a higher chance to die out, while most fit individuals have a higher chance to survive as members of the next generation. Members of the next generation can be selected either from parents and offspring, or only from the offspring. If the very fittest parent(s) are only selected in addition to offspring, this is called an elitist selection, which guarantees a monotonic improvement of the fittest individual from generation to generation. A genetic algorithm starts with the selection of an initial population, and continues with iteration steps resulting in a new generation. The iteration is stopped either by the fulfilment of some convergence criterion, or after a predetermined number of generations. The best fit individual – called the winner – is selected as the solution of the problem.
In the “classical” version of GA, individuals have been represented as a binary string, which coded either the complete solution, or one of the parameters to be optimised. These strings were considered as the genetic material of individuals, or chromosomes, while the bits of the string as genes. In the classical binary representation, there were two different alleles of a gene, 0 or 1. As it is sometimes problematic to represent a solution in the form of binary strings, for numerical optimisation purposes, floating point coding is usually used, which allows virtually infinite number of alleles. Classical (binary) genetic operators have accordingly been also replaced by arithmetic operators. The “art” of using GA’s is in finding a suitable representation or data structure for the solution and using genetic operators that can explore the solution space in an efficient way, avoiding local optima and converging quickly to the global optimum.
Deconvolution methods described in the literature use different representations and a variety of genetic operators. While binary coding and classical binary crossover and mutation are appropriate for processing black and white images14, much more “tricky” encoding and operators should be used to deconvolve measured kinetic signals.21 Generation of the initial population may also be critical. One method is the completely random generation of the first individuals, while a careful generation of already fit individuals is sometimes important.

To deconvolve femtosecond kinetic data, we should deal with the same problems while using a GA as with other methods: to avoid an amplification of the experimental noise as well as oversmoothing which results in low frequency “wavy” distortion. The non-periodic nature and sudden stepwise changes should also be reconstructed without distortion. We have found that the above needs cannot be fulfilled if we start the “breeding” with a randomly generated initial population. Therefore, the first task is to select individuals who already reflect some useful properties of a good solution.
4.1.  Data structure and generation of the initial population
The solution of the convolution equation (15) is a data set containing the undistorted (instantaneous) kinetic response of the sample at the same time instants as the measured image function. It is obvious to code the solution so that it is exactly this data set, which means a vector containing floating point elements, each of them representing a measured value of the undistorted (instantaneous) kinetic response. In terms of GAs, this is a single haploid chromosome containing as much genes as there are data points measured, with a continuous set of values, i. e., an infinite number of alleles. As each parent and each offspring is haploid, there is a haploid mechanism of reproduction to implement. There is no need to “express” the genes as phenotypes, as the chromosome already represents the solution itself.
We know quite well what is the distortion resulting from convolution, so we tried to develop operators which invert the effect of this distortion. Convolution results in a kind of a weighted moving average, which widens the signal temporally, diminishes its amplitude, makes its rise and descent less steep, and smoothes out its sudden steplike jumps. Accordingly, we started from the image itself and have implemented an operator to compress the image temporally, another to enhance its amplitude, a third one to steepens its rise and decay, and finally, one to restitute the stepwise jump by setting a few leading elements of the data to zero.
All four operators – which we may call creation operators – are constructed to conduct a random search in a prescribed modification range. To this purpose, normally distributed random numbers are generated with given expectation and standard deviation for the factor of temporal compression, of amplitude enhancement, for increasing the steepness of rise and decay, and for the number of data to cut to zero at the leading edge of the data set. The whole resulting initial population is displayed graphically, along with the original image. The best individual and the result of the convolution of this individual with the spread function (the reconvolved), as well as the difference of this reconvolved set from the image is also displayed. If the reconvolved is too much different from the image, or if there are spurious oscillations present in the best individual, another selection is made with different expectation and / or standard deviation parameters of the generation operators. The procedure is repeated until the user is content with the selected initial population.
Parameterization of the creation operators can easily be done on an intuitive basis. The major point is that individuals should be without fluctuations. With a little experimentation, fairly good estimates of the deconvolved data set can be chosen as individuals of the initial population. This in turn guarantees that any spurious oscillations in the offspring of this population would die out, and the genetic drift will drive the population towards a desired global optimum.
4.2.  Parent selection and crossover
For the selection of parents, a suitable measure of their fitness is needed. The quality of the deconvolved data set – an individual of the population – can be measured readily by the mean square error (MSE) of the reconvolution, given by
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where ô is the estimate of the deconvolved, i. e., the actual individual of the population, and N is the number of data in the image data set. This error has to be minimised, so it is not a good candidate for fitness, as the classical fitness of an individual has to be maximised. GA literature suggests that some kind of inverse of this error should be used so that the resulting fitness function is normalised. We implemented a dynamic scaling of fitness by adding the minimal MSE of the population in the denominator: 
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which maintains the fitness values in the range from 1 / ((min(MSE) + max(MSE))) to 1 / (2 min(MSE)).
Once the fitness of individuals is calculated, we use stochastic sampling with replacement, implemented as a roulette-wheel selection24-27 to choose parents for mating, which imitates natural selection in real-world population dynamics. To have the offspring, arithmetic crossover of the parents is performed, which results in an offspring whose data points are the average of the corresponding parents’ data. (We have experimented with fitness-weighted averages as well, but there was not much difference concerning convergence and the quality of the winner.) This procedure of parent selection and crossover is made until the number of produced offspring becomes the same as the number of population.
4.3.  Mutation and selection of the new generation
The crossover used explores the potential solutions within the range represented by the initial population, but it cannot move the population out of this region. Mutation is used to further explore the fitness landscape of the solution space. This is also a crucial operator to avoid the usual noise amplification and low-frequency wavy behaviour. If we use a single-point mutation, noise is amplified at an undesired rate. A better choice is to use a “smooth” mutation of neighbouring data points, which results in an effective smoothing of the mutated individuals after a few crossovers. The smooth mutation has been implemented as an addition of a randomly generated Gaussian to the actual data set. The expectation (centre), the standard deviation (width) and the amplitude of the additive Gaussian correction is randomly selected within a specified range, including both positive and negative amplitudes. (Leading zero values of the initial population get never changed by mutation, they are always kept as zero.) As a result, noise amplification gets slowly dumped and a really smooth population is maintained. If there is a long tail of the kinetic response (e. g. due to largely different characteristic times involved in the reaction mechanism), its slow decrease can easily be reconstructed by this mutation, even if the initial population had a much sharper decrease without a long tail.
There is another feature which proved to be useful; the non-uniform mutation26. This is responsible for a fine-tuning of mutations so that it moves a rather uniform and close to optimal population further towards the global optimum. If the amplitude of mutation is small, the convergence at the beginning of the iteration is also small. A larger amplitude results in a faster convergence but makes the improvement of individuals impossible after the deviation of the solution from the optimum is within the mutation amplitude. To get a closer match of the optimum, it is necessary to diminish the amplitude of the mutation as the number of generations increases. This can be achieved by reducing the amplitude either with increasing number of generations, or with decreasing deviation from the optimum. We have opted for the latter adjustment. The experimental error can be estimated by the standard deviation of measured image data in the range where its values are more or less constant. This is the case in the leading zero level of the signal – before the effect of excitation by the pump pulse is seen – or at the end of the signal, if the detection is done long enough to get a constant level. Comparing this experimental error to the difference between the MSE of the fittest and the least fit individuals, the amplitude parameter of the Gaussian mutation is multiplied by the factor
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This factor goes to zero as the MSE difference of the best fit and the least fit individuals goes to zero, so the modification generated by mutation is kept small enough to result in a perpetual drift of the population towards the global optimum. To avoid problems arising from an overestimation of the experimental error, this factor f can be checked and set equal to a prescribed smallest value if the ratio in the exponent becomes too much close to one, or even less.
When the number of newly generated offspring equals the population number, selection of the new generation is done. All the parents die out except for the best fit, and the newly generated individuals become members of the new generation, except for the least fit which is replaced by the surviving best fit parent. This selection method is called single elitism and guarantees a monotonous improvement of the best individual.
4.4.  Termination of the GA and the choice of the winner
After each generation, the quality of individuals is evaluated by the MSE between image and reconvolved, as it is used to calculate the fitness. In addition to this, the Durbin-Watson (DW) statistics of the residuals between these two data sets in the case of the best fit individual is also calculated.28-30 If the experimental error can be estimated from a few data of the image data set that can be considered constant, it can also be calculated similarly from the deconvolved data.
To terminate the iteration, we can use the criterion that the square root of the MSE between the image and the reconvolved data set of the best individual – the winner – should be less than or equal to the experimental error. However, it does not guarantee that the reconvolved solution closely matches the image; there might be some bias present in the form of low-frequency waviness. The Durbin-Watson statistics is a sensitive indicator of such misfits. For the large number of data in a kinetic trace (typically more than 200), its critical value for a test of random differences is around 2.028-29, and it is typically much lower than that for a wavy set of differences. Thus we may either set a DW value close to 2.0 as a criterion, or combine the experimental error criterion with the DW criterion so that both of them should be fulfilled.
There are less specific GA properties that can also be used to stop the iteration. If the MSE of the best individual would not change for a prescribed number of generations, the algorithm might have converged. Similarly, if the difference between the square root of MSE of the best fit and the least fit individual becomes less than the experimental error, we cannot expect too much change in the population due to mutations. However, the use of these criteria only indicates that the GA itself has converged but it does not guarantee a satisfactory solution.
5.  Results and discussion
We have implemented the genetic algorithm described above as a package of user defined Matlab functions and scripts. All the input data including filenames and operator parameters are entered into a project descriptor text file. The output file contains the entire project descriptor, statistical evaluations, and all relevant results arranged in the form of a matrix containing different data sets as columns. In addition, there is a four-panel figure displayed, containing most of the results for immediate graphical evaluation. The driver program has been written in two forms; one for the evaluation of synthetic data where the undistorted object is also known, and another for the evaluation of experimental data where only the experimentally determined image and spread data are known.
To test the performance of the algorithm, we used the same synthetic data calculated for a simple consecutive reaction containing two first-order steps, as in previous publications.10-12 They mimic typical transient absorbance curves, including a completely decomposing reactant along with a product of positive remaining ΔOD and another with bleaching, i. e., with negative remaining ΔOD. However, as recent measurements in fluorescence detection also explored extremely short characteristic times with simultaneous long-time components31-32, we also added a synthetic data set mimicking this situation, with time constants of 100 and 500 fs, and an IRF of 310 fs fwhm. While a data set with bleaching necessitates the most careful transformation using the creation operators, the one with an extremely short fluorescence decay rate in addition to a longer decay component challenges the power of the algorithm to reconstruct an extremely large stepwise jump followed immediately by a steep decay and ending in a long tail.
5.1.  Test results for a synthetic transient absorption with bleaching
The first test result shown here comes from the deconvolution of the same synthetic image data that have been used to test deconvolution method in refs. 10-12. 
Figure 1 shows the best deconvolution result obtained for a highly non-periodic data set comprising both positive and negative data and a slight initial stepwise jump. 
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Figure 1.  Deconvolution results for synthetic transient absorption data with bleaching. Left panel: Time-domain representation showing the undistorted object (open circles), the synthetic image with added noise (full circles), the deconvolved data (solid curve close to the object), the reconvolution of the deconvolved data (solid curve close to the image) and the residuals between image and reconvolved (dots). Right panel: Frequency-domain representation showing the amplitude spectra of the corresponding data using the same notation as in the left panel.
(
IV. Numerical tests of the implemented deconvolution methods

After having tried several deconvolution procedures, we have chosen to thoroughly test the applicability of those that could be successfully used in the deconvolution of femtosecond kinetic data. For the test purposes, we have used synthetic data, calculated based on the simple consecutive mechanism
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with the initial conditions [A] = 1, [B] = [C] = 0 at t = 0. The resulting kinetic response function is
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(38)

We have calculated three different kinetic curves (representing three detection wavelengths with different ( values of the individual species). The time series of ( OD values obtained this way were convolved with a 255 fs FWHM Gaussian spread function and sampled at 30 fs intervals. To mimic experimental error, a random number was added to each sampled value, generated with a normal distribution. The mean of the distribution was zero and its variance was 2 % of the maximum of the convolved data set, which is equivalent to an RMS error of ????. The resulting data were used as the input in with each deconvolution method, along with the error-free spread function sn sampled at the same time intervals.

Nonparametric deconvolution methods were implemented the following way.

i) Van Cittert linear iterative method. This method has been tested only for comparison to see the degree of improvement when switching from a linear to a nonlinear iteration. The relevant iteration formula for the discrete dataset in and sn was
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where k is the number of iterations, and the subscripts n and m have the same significance as in Eq. (21). As zeroth approximation we used 
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, the synthetic dataset.

ii) Iterative Bayes deconvolution. This method is computationally more demanding due to the double convolution included in each iteration step. The iteration formula for discrete data can be written as
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(40)

As this method requires that the initial data set in should be positive, a “baseline correction” is needed if there is bleaching present or if experimental noise results in negative values of the in set. This can be done by adding a positive constant to in so that in > 0 for all n. Once the Bayes deconvolution is done, the same constant can be subtracted from the resulting ôn data.

iii) Jansson’s iterative deconvolution. From computational point of view, Eq. (39) should be modified only by multiplying the correction term with a suitable relaxation function:
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As seen from Eq. (33), there is a need for the minimum and maximum of the true solution on, which is not easy to know prior to deconvolution. Even in the case of no bleaching or fluorescence detection, only the zero minimum is known, not the maximum. We tried two methods to get the extrema of the true object function; we either made a Jansson deconvolution with omin = imin and omax = imax, or made a Bayesian deconvolution where you do not need those two parameters. We then started a new Jansson deconvolution using the upper and lower boundary limits thus obtained. + Wiener?

iv) Golds’s ratio method. Due to the important noise content of presently available femtochemical data, this method should certainly provide more noisy results then the Bayes method that has an additional smoothing in each iteration step. Gold’s method was included in the present study to show exactly this improvement when the computationally more demanding Bayes method is used. The relevant iteration formula is
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v) Inverse filtering. This procedure is based on Fourier and inverse Fourier transforms. Though the popular FFT method is also appropriate to use when calculating forward or inverse transforms, we usually get better results with the direct discrete Fourier transform (DFT) and its inverse transform if the number of data N does not match exactly a power of 2. This is probably due to the fact that padding the dataset with zeros (or other arbitrary values) to N = 2k when using FFT usually results in a distortion of the transform. With recent computers, DFT calculations up to a few hundred data can be carried out within reasonable time. Implementation of the DFT algorithm follows the formula


[image: image33.wmf]å

-

-

=

1

0

2

N

N

inm

n

m

e

f

F

p


(43)

for the forward and
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for the inverse transformation.

As we have pointed out before, simple inverse filtering enormously amplifies high frequency noise, so this method cannot be applied without effectively filtering out this noise. We have tried four different filtering methods. One was prefiltering the i(t) dataset using the reblurring procedure described in Chapter III. Another method was the use of a simple low-pass filter, i.e. cutting the Fourier transform Ô above a threshold frequency fo prior to inverse transformation.
A Wiener filter is more sophisticated which minimizes the sum of squared differences between the original function f, and the inverse Fourier transform of 
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, denoted by 
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. As the original f function is not known, approximations for the optimal Wiener filter are usually used. A critical study of different formulations of the Wiener filter and their applicability to radioactive indicator-dilution data is described by Bates [29]. In the case of a white noise – where the noise amplitude is the same constant N at each frequency –, the Wiener filter can be approximated with the form [30]
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The relevant implementation of this filter to get the deconvolved Ô is
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(46)
This filter – called modified adaptive Wiener filter – has been successfully used to deconvolve radioactive indicator-dilution response curves by Gobbel and Fike [30].

Finally, we also tried the two-parameter regularization filter
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(47)
proposed by Dabóczi and Kollár [32]. Its simpler versions with only one additive constant in the denominator (the equivalent of λ) is widely used, as was proposed e.g. by Parruck et al. [33]. Implementation of this filter was similar to that of the Wiener filter; the inverse filtered result was multiplied by this filter, giving the Fourier transform of the object as
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Here,
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(49)
is the square of the absolute value of the Fourier transform of the second order backward differential operator, and S* means the complex conjugate of the frequency domain function S. This filtering avoids division by zero where 
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 becomes practically zero, by the addition of the constant λ and the frequency-dependent correction γ |L|2 to the denominator. Regularisation has been applied to isothermal DSC data by Pananakis and Abel [27], using the equivalent of Eq. (12) with γ = 0, i.e., a one-parameter only regularization filter.

It is interesting to compare the last two filters. For a better comparison, let us multiply both the numerator and denominator of Eq. (46) by S*/ |I|2 to get
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(50)
Comparing Eqs. (48) and (50) we see that singularities in both filters are avoided by additional terms to 
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 in the denominator, thus providing regularization of the deconvolution. In this respect, Wiener filtering can also be considered as a special case of regularization. However, the three different additive terms have different “side-effects” in addition to avoiding singularities. The constant λ smoothes also the signal itself, thus reducing eventual experimental noise independently of the frequency. The role of the term |N|2/ |I|2 in the Wiener filter is also to reduce experimental noise, but the effect of the constant error power |N|2 is modified when divided by the frequency dependent image power |I|2. The smaller the power of the image (i.e., the higher the frequency), the greater the smoothing effect as well, in addition to the regularizing effect. The term γ |L|2 in the regularization filter is similar in that its smoothing effect increases with increasing frequency, but in this case independently of the image power. Obviously, if regularization should be important, the constant λ oversmoothes the signal before reaching a value necessary for proper regularization. We shall discuss these effects later.
There is an additional problem with the Fourier transformation of femtosecond kinetic data; the measured datasets are non-periodic, as can be seen from Figure 2. This non-periodic nature makes the Fourier transforms to have virtual high-frequency components, as the difference from zero at the end of the datasets means a discontinuity in a circular transformation, which generates high frequency components characteristic of steplike functions. These extra frequencies further increase spurious fluctuations in the deconvolved result, so they should be treated prior to deconvolution. There are methods described in the literature to avoid this problem in different ways. We have used the method proposed by Gans and Nahman [34] by subtracting the shifted data from the original dataset to give a strictly periodic, finite support sequence. This results in a well-behaved Fourier transform, but provides twice the number of data in the frequency domain. However, due to double sampling of the time-domain data, each second item in the frequency-domain dataset is zero, and can be neglected. As a result, we get the discrete Fourier-transform of the unmodified dataset but without the high frequency components that would appear if not performing the transformation to a periodic sequence. It should be noted that other proposed methods to treat steplike functions prior to Fourier transformation are equivalent to the Gans-Nahman method [35].
The object function ôn obtained with each deconvolution method mentioned above was analyzed the following way. Using the least-squares iterative parameter estimation of Marquardt [36], the parameters of the model function defined by Eq. (38) and their standard deviations were determined. Based on these values, the 95 % confidence interval was calculated for each parameter [9]. Confidence intervals calculated this way were compared to the least-squares iterative reconvolution results obtained from the i(t) data with the convolved model function. As the reconvolution procedure contained all information except for the parameters concerning the object function during deconvolution, parameters obtained this way represent the best available estimates. In addition, various overall statistics and Fourier transform properties were also calculated.

Fourier transforms can help to check the noise content of the measured data and follow the extent of noise reduction during deconvolution. To this end, we show some amplitude spectra in the frequency domain of the measured and restored datasets, and transfer functions of the applied procedures calculated as the amplitude spectrum of the deconvolved result divided by the amplitude spectrum of the measured dataset.
As for testing purposes we use synthetic data, we are in a position to calculate the mean square error (MSE) of the deconvolution for the object function defined as
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We also calculate a similar statistics using the sum of squares of differences between the reconvolved results and the original image function defined as
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This latter can be calculated also in case of a measured im dataset, when we do not know the true object function. Another indication of the quality of the deconvolved data om is the oscillation index proposed by Gobbel and Fike [30]. This is the difference of the sum of subsequent data in the deconvolved dataset from the same sum for an ideally smooth dataset with the same initial, final and maximal values, normalized with the number of data and the amplitude of the dataset:
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Here, 
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A) Test results

B) Conclusions and recommendations

V. Deconvolution of real-life experimental data
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