1 LEAST SQUARES PARAMETER ESTIMATION - Marquardt method DATA from file: Szekeres Ákos 1.rend lineáris Number of PARAMETERS............. 2 Number of FUNCTIONS.............. 1 Number of independent VARIABLES.. 1 Number of DATA POINTS............ 15 Convergency limit................ 1.0E-15 Equal weights Starting parameters: -2.000E-01 1.000E-01 D A T A P O I N T S --------------------------------------------------------------------------- X1 Y1 --------------------------------------------------------------------------- 1 1.0000 .0402 2 2.0000 -.2588 3 3.0000 -.4510 4 4.0000 -.5816 5 5.0000 -.6872 6 6.0000 -.7897 7 7.0000 -.8867 8 8.0000 -.9545 9 9.0000 -.9835 10 10.0000 -1.0189 11 11.0000 -1.0498 12 12.0000 -1.1117 13 13.0000 -1.1520 14 14.0000 -1.2140 15 15.0000 -1.2588 --------------------------------------------------------------------------- 1 Szekeres Ákos 1.rend lineáris Estimates of the PARAMETERS of their STANDARD DEVIATIONS 1 -.8238666737 2.105E-01 2 .0000000009 2.269E-02 95 % confidence intervals half-width lower limit - upper limit P(1) 4.538E-01 -1.278E+00 - -3.700E-01 P(2) 4.892E-02 -4.892E-02 - 4.892E-02 Principal component analysis of correlation matrix EIGENVALUE P(1) P(2) 1.880 .707 .000 .120-.707 .707 Desired convergence not obtained 1 Fit of the model at the actual data points MEAN=********** VARIANCE= 1.394E-01 RESIDUAL= 1.626E-01 FIT= .000% Number of iterations............ 51 Sum of squared residuals........1.950950E+00 Chi2 (if proper weights used)...******* Reduced chi2 (if pr. weights)...******* Number of degrees of freedom.... 13 Estimated weighted error........3.874E-01 Critical t (95 % confidence)....2.156 Goodness of overall fit......... .000% Calculated values of the model function and residuals are listed in the file FIT.OUT Correlation matrix of the parameters P(1) P(2) P(1) 1.000 P(2) .880 1.000