1 LEAST SQUARES PARAMETER ESTIMATION - Marquardt method DATA from file: Buffalo Bill 3.rend Number of PARAMETERS............. 2 Number of FUNCTIONS.............. 1 Number of independent VARIABLES.. 1 Number of DATA POINTS............ 15 Convergency limit................ 1.0E-15 Equal weights Starting parameters: 1.000E+00 1.500E+00 D A T A P O I N T S --------------------------------------------------------------------------- X1 Y1 --------------------------------------------------------------------------- 1 1.0000 .5640 2 2.0000 .3710 3 3.0000 .3610 4 4.0000 .2850 5 5.0000 .2880 6 6.0000 .2500 7 7.0000 .2190 8 8.0000 .2030 9 9.0000 .1990 10 10.0000 .1980 11 11.0000 .2090 12 12.0000 .1630 13 13.0000 .1680 14 14.0000 .1700 15 15.0000 .1410 --------------------------------------------------------------------------- 1 Buffalo Bill 3.rend Estimates of the PARAMETERS of their STANDARD DEVIATIONS 1 1.3388279781 3.416E-01 2 1.3501680958 7.559E-02 95 % confidence intervals half-width lower limit - upper limit P(1) 7.365E-01 6.024E-01 - 2.075E+00 P(2) 1.630E-01 1.187E+00 - 1.513E+00 Principal component analysis of correlation matrix EIGENVALUE P(1) P(2) 1.764 .707 .000 .236-.707 .707 1 Fit of the model at the actual data points MEAN=2.5260E-01 VARIANCE= 1.220E-02 RESIDUAL= 3.366E-04 FIT= 97.636% Number of iterations............ 5 Sum of squared residuals........4.039366E-03 Chi2 (if proper weights used)...******* Reduced chi2 (if pr. weights)...******* Number of degrees of freedom.... 13 Estimated weighted error........1.763E-02 Critical t (95 % confidence)....2.156 Goodness of overall fit......... 97.636% Calculated values of the model function and residuals are listed in the file FIT.OUT Correlation matrix of the parameters P(1) P(2) P(1) 1.000 P(2) .764 1.000 Covariance matrix of the parameters P(1) P(2) P(1) 1.1668E-01 P(2) 1.9727E-02 5.7141E-03