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Spectrophotometry is an excellent experimental method providing sufficient information

on the equilibrium concentrations of a (usually liquid) reaction mixture. For many decades,

chemists have made a great effort to infer equilibrium constants from this rich source of

information. A paradox feature of this effort was that they usually did not aim atmaximum or

optimum informationconcerning the equilibrium constant but tried to fulfil peculiar conditions

to be able to use one of the numeroussimplified treatmentsto evaluate experimental data. The

common feature of all these simplifications was to remove the essentially non-linear nature of

the related model equations, to select and manipulate experimental data in such a way that

finally, to get the equilibrium constant, only linear models had to be treated.

Problems arising from this "selection and manipulation" of the experimental data have

been discussed in detail by Richard Ramette (1) in this journal. He also proposed – among

others – a clear and correct treatment of the linear models, described criteria to choose the

most appropriate one to handle experimental data, and developed a computer program – as

early as 1967 – to infer equilibrium constants from practically all experimental "cases".

However, his treatment also remained in the framework oflinearized modelsonly. Almost two

decades later, Michael Collins extended Ramette's algorithm to use with other methods in

addition to spectrophotometry (e. g., solution calorimetry, NMR chemical shift) (2), still

keeping the essentially linearized evaluation of the experimental data. Though there have been

several applications of non-linear parameter estimation in evaluation of spectrophotometric and

other equilibrium measurements, they were based on the mathematical and numerical treatment

of the particular nonlinear model (3,4). A critical overview of early chemical equilibrium

applications of non-linear parameter estimation is given in Ref. (3). However, earlier

applications usually had to deal with many numerical and computer programming details, being

too much tedious to implement in undergraduate lab courses.

The present paper – after another decade – shows a non-linear evaluation method for

spectrophotometric data. This method uses the physical descriptionas it is for a model

function to infer the equilibrium constant from experimental data. In1986, Collins mentioned,

"in favor of the Ramette approach" the "widespread microcomputer availability". Nowadays,

thanks to the widespread availability of sophisticated mathematical software packages, non-

linear parameter estimation became an easy task to make with minimum mathematical and no

programmation skill. The availability of the non-linear methods makes it possible to

concentrate on optimum information when calculating the equilibrium constant, with the

additional convenience of almost no mathematical manipulation of the underlying (simple)
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equations. Details of the numerical techniques of non-linear parameter estimation can be found

in current statistical or numerical textbooks (5-7).

Derivation of the model

As the aim of this paper is mainly to show the ease and superiority of non-linear

methods, we shall only discuss simple cases and show a few examples. Let us consider the

prototype donor-acceptor reaction, with the same notation as in Refs. 1 and 2:

D + X →→→→←←←← DX (1)

We are interested in the equilibrium constant of this reaction, which can be written as

[ ]
[ ] [ ] XD
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where brackets stand for equilibrium concentrations, and the symbolsƒ indicate the

corresponding activity coefficients. Keeping in mind that activity coefficients are usually

calculated or determined independently of the spectrophotometric experiment, it is sufficient to

determine a "simplified version" ofK, the equilibrium quotient:

[ ]
[ ] [ ]XD

DX

⋅
=Q (3)

This is the quantity we are interested to infer from spectrophotometric data, which

consist of absorbances measured at different wavelengths, of mixtures with varied

concentrations. The absorbance of an equilibrium mixture at a wavelengthλ can be written in

terms of Beer's Law:

[ ] [ ] [ ]( )DXXD ⋅+⋅+⋅⋅= λλλλ εεε DXXDA l (4)

When applying the straightforward method to determine the equilibrium quotient, Eq. (4) is

directly used as a model function; we apply a non-linear parameter estimation algorithm to

estimate λλλ εεε DXXD ,, andQ, as parameters of theAλ function.

Let us show what are the independent variables in theAλ function, and howQ appears in

it as a (non-linear) parameter. The preparation of equilibrium mixtures proceeds in one of two

ways. We can either mix the two components of the complex D and X in known initial

concentrations, or mix the complex DX and one of its constituents (say, X). In the first case,
be cD and cX the initial concentrations mixed. At equilibrium, we get the complex

concentration [DX]. From the stoichiometry of reaction (1) it follows that

[ ] [ ]DXD −= Dc (5a)
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[ ] [ ]DXX −= Xc (5b)

The resulting absorbance (divided by the optical path-lengthl ) can be written as:

[ ]( ) [ ]( ) [ ]DXDXDX ⋅+−⋅+−⋅= λλλ
λ

εεε DXXXDD cc
A

l
(6)

Rearranging terms, we get:

( ) [ ]DX⋅−−+⋅+⋅= λλλλλ
λ

εεεεε XDDXXXDD cc
A

l
(7)

Now, the unknown equilibrium concentration [DX] can be obtained solving the equation

analogous to Eq. (3):

[ ]
[ ]( ) [ ]( )DXDX

DX
−⋅−

=
XD cc

Q (8)

The solution provides

[ ] ( ) ( ) ( )
Q

ccQccQccQ XDXDXD

2
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DX
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= (9)

The second case, withcDX and cX initial concentrations mixed, gives only somewhat different

formulae as a result. The equilibrium concentrations in this case can be written as

[ ] [ ]DDX −= DXc (10a)

[ ] [ ]DX += Xc (10b)

The only formal difference with respect to the previous case comes from the sum in Eq. (10b)

instead of the two differences of Eq. (5a and 5b). This results in the equation

[ ]
[ ] [ ]( )DD
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+⋅
−=

X

DX

c

c
Q (11)

to solve. The solution is

[ ] ( )
Q

cQccQcQ XDXXX

2

2211
D

22 ⋅+−⋅+±⋅+
= (12)

This should be substituted in the corresponding Beer's expression:

[ ] [ ]( ) [ ]( )DDD −⋅++⋅+⋅= DXDXXXD cc
A λλλ

λ
εεε

l
(13)
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Rearranging, and substituting expression (12) gives:

( ) ( )
Q

cQccQcQ
cc

A XDXXX
DXDXDXDXXX 2

2211 22+−+±⋅+
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(14)

Putting together Eqs. (7) and (9), we get, for the other case:

( ) ( ) ( ) ( )
Q

ccQccQccQ
cc

A XDXDXD
DXDXDDXX 2

211 22 −⋅+++±+⋅+
−+−+= λλλλλ

λ
εεεεε

l
(15)

From Eqs. (14) and (15) it is easily seen that, in both cases,Aλ/ l is the dependent

variable, as a function of eithercX andcD, or cX andcDX (or cD andcDX , which leads to the same

result) as the independent variables. Asparametersof the function appear λλλ εεε DXXD ,, andQ.

However, whileAλ/ l is a linear function of λε -s, it is a non-linear function ofQ — hence the

necessity for a non-linear parameter estimation.

To determine the appropriate wavelength, we have to keep in mind that — as can be

seen from Eqs. (14) and (15) — the term containingQ is multiplied by λλλ εεε DXDX −+ , so that

the information content of the absorbance concerning the equilibrium quotient is the greater,

the bigger the difference between molar absorptivities of the constituents and the complex.

(This is evident; if λλλ εεε DXDX =+ , there is no change in absorbance due to the complex

formation.) Parameter estimation is efficient if the number of measured data points largely

exceed the number of parameters to estimate. In the above case, there are four parameters to

determine, so a desirable number of data points is about 20 or more. If it is problematic to

prepare so many mixtures of different concentrations, we have to measure at several

wavelengths. At each wavelength, three molar absorbances appear as additional parameters,

but the equilibrium quotient should be the same. So if we have only 10 mixtures, measuring

their absorbances at four different wavelengths results in 13 parameters but 40 measured

experimental points. The number of degrees of freedom can be calculated (seee.g.Ref. 5) as

(the number of measured points) – (the number of parameters) – 1. This gives 15 for 20

mixtures at a single wavelength and 26 for 10 mixtures at 4 wavelengths. The latter case

usually gives better precision in the parameter estimation, as the number of degrees of freedom

is higher.

However, there is another possibility to increase the precision of estimation. If we

suppose some absorption band profile (e.g. Gaussian or Lorentzian) for the three species

involved, then we have three parameters (the position of the absorption maximum, the

maximum absorption or the area of the band, and the width of the band) for each absorbing

species, plus the equilibrium quotient. These are ten parameters altogether, but the number of

parameters does not increase if we measure absorbances at several wavelengths. With the

above example, measuring 10 mixtures at four different wavelengths means 40 data points and

ten parameters, i. e., 29 degrees of freedom, compared to 26 when we ignored the absorption
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band shape. Of course, there is no limit for increasing the number of test wavelengths. When

doing so, we not only determine the equilibrium quotient to a high precision, but also get the

complete absorption spectra of all the three species involved (if they do have nonzero

absorptivities in the observed wavelength region).

There is another advantage of using the above-described straightforward non-linear

method with the absorption band parameters and a large number of data points at many test

wavelengths. If we suspect additional equilibria with additional species instead of the simple

complex formation described by Eq. (1), we can easily rewrite our model including the

absorption parameters of additional species, with the appropriate solution of the corresponding

equilibrium concentration(s), and check for the improvement of the fit due to the more

complicated model. When there is a significant improvement, we can opt for the more complex

model and interpret its parameters to describe the equilibrium.

Statistical method

In this section, we would like to overview, in a few words, the way to get estimates of

the parameters and their errors in a non-linear estimation process. Without going into

mathematical details, we would rather like to explain how the machinery works.

Non-linear parameter estimation can be considered as a synonym for curve fitting to a

data set, if the data are not arranged along a line. The most widely used method to fit an

appropriate curve to such data is calledthe method of least squares. According to this, if we

have data pointsAobs,i and a function to model the data which gives the fitted values at each

data pointAcalc,i , we get optimal fit of the curve – and hence optimal values of the parameters

involved in the model functions – if we minimize the sum

( )∑
=

−=
m

i
iii AAwS

1

2
calc,obs, (16)

called theweighted residual sum of squares. The summation goes over all them measured

points. The factorwi is the so-called weighting factor. If we choosewi the way that it is

proportional to 1/s2(Aobs,i), the inverse of the variance at each measured point, we get the best

kind of estimates calledminimum variance unbiased. Most commercial software packages do

not have the option to enter individual weighting factors, so they use equal weights at each

data point (i.e. wi = 1 at all i), which is equivalent to the approximation that the experimental

error is the same at each measurement. (This is, in fact, anon-weightedestimation. For the

sake of simplicity, we shall also use this approximation in the examples treated below.) Now, if

the experimental error is really constant at each point, whenever we transform the measured

data in a nonlinear way (e.g. make a nonlinear transformation of the original data to get a

linearized function), we should also transform the weight function, which then becomes

different at each data point. The transformation of errors can be done with the method usually
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calledthe propagation of errors, which has been treated at length in this journal (8, 9, 10). The

weighting problem is easily avoided using a nonlinear parameter estimation method with the

original observed values. The reader is advised to refs. 5-7. to learn more about weighting and

the method of non-linear least squares.

Most estimation methods readily provide also an estimate of the error of the parameters.

However, this error indicates a measure of reliability of the parameters, which is dependent on

the number of experimental points that have been used in the estimation procedure. A better

measure of the reliability is theconfidence intervalof the parameters, which takes into account

both the calculated error and the number of data points. If thestandard deviationof a

parameterp is s(p) – which is simply given by most software packages as “error” –, the

corresponding interval at 1 –α level of confidence is

p ± s(p) tν (1 – α/2) , (17)

where tν (1 – α/2) is that value of the variabletν of a Student’st-distribution, at which the

cumulative distribution function is exactly 1 –α/2 . The subscriptν is the number of degrees

of freedom (see previous section).

Application

To show the details of how this method works, we have chosen two examples. First we

re-analyze the data of Table 3 in the paper of Ramette, and compare our results with those

originally reported by the author. The second example is an undergraduate experiment in the

physical chemistry practical course at our university, the charge-transfer complex formation
between I2 and DMSO in a CCl4 solution. For this latter case, we will analyze an

undergraduate lab experiment with measurements at two selected wavelengths first, and also a

wide-range wavelength study of this equilibrium with the determination of the relevant

absorption bands, to show the validity of the equilibrium model.

As the first illustration of the non-linear parameter estimation method for

spectrophotometric data, we re-evaluate Ramette's calculation of equilibrium quotient for the

simple complex-forming reaction between Fe3+ (substance D), and SCN– (substance X),

keeping the original assumption that a 1:1 complex ion is the only product in a perchloric acid

medium for this reaction at the wavelength measured (450 nm), and the only absorbing species
is FeSCN2+, (substance DX). This case is modelled by Eq. (15), whereε ελ λ

D Xand (the molar

absorption coefficients of Fe3+ and SCN–) are put to zero,ε λ
DX andQ are the parameters to

estimate. Note that the model function is simply the measured absorbance as a function of

composition, there is no need to manipulate raw experimental data. The graph of the fitted

model function (15) is shown in Fig. 1, where the excellent quality of the fit is also obvious.
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Figure 1. Plot of the fit of Eq. (15) to the experimental data points (triangles) for the

Fe3+- SCN– complex formation measured at 450 nm. (The initial SCN– concentration

is 0.0003 M.) Note that the plot shows the raw data without any transformation.

We performed the same analysis adding first the observations at 440 nm, then also those

at 460 nm, taken from the original report of the experimental data by Frank and Oswalt (11).

The nonlinear method also provides reasonable estimates of the errors and confidence

intervals. As we can see from the results shown in Table 1, increasing the number of

experimental data points from 7 to 21 results in decreasing the half width of the confidence

interval of the equilibrium quotient from 15 to 6, compared toQ = 131.0,i. e., from a relative

error of ≈ 12 % to ≈ 4.6 %. (When performing the non-linear fit at each single wavelength

separately, the respective half-widths were 13, 15 and 11. This means that the decrease is really

due to the increase of the degrees of freedom with increasing number of data points.)

Table 1. Precision of the estimated parameters as a function of the number of experimental

data points. Experimental data are taken from Ref. (11). Absorbances of the same

seven mixtures are measured at each wavelength.

Nº of data
points

Nº of degrees
of freedom

95 % confidence
interval of Q

7
(450 nm)

4 116-146

14
(440+450 nm)

10 122-139

21
(440+450+460 nm)

16 125-137

The estimatedcorrelation of the equilibrium quotient to the estimated molar

absorptivities of the complex is – 0.95 at all the three wavelengths, which explains the relatively

high uncertainty of the estimated value ofQ. The comparison with Ramette’s original results

can also be explained on the basis of this correlation. In table 3 of ref. 1, Ramette givesEDX =
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3552.5 (to compare to DXε = 3609.9 obtained in the present study), and an “averageQ” of

134.6, (to compare to 131.0). This is in accordance with the high negative correlation of the

two parameters; the lowerEDX parameter gives rise to a higherQ value. Ramette does not

calculate the error ofEDX, and does not take it into account in the calculation of the error of

Q, so his “average deviation” calculated forQ, 1.6 % or 2.15 largely underestimates the actual

standard deviation (6.2) obtained in this study. This latter gives rise to the 95 % confidence

interval 116-146, given in the first raw of Table 1. Nevertheless, the reportedQ = 134.6 is

within these confidence limits.

The second example comprises a thorough analysis of experimental data concerning the
formation of a 1:1 charge transfer complex of iodine and DMSO in CCl4. We prepared nine

mixtures containing 0.001 M iodine each, and varying amounts of DMSO in the concentration

range 0.01 M - 0.09 M. First we analyzed absorbance data of the nine mixtures at two

wavelengths (446 nm and 518 nm; at about the maxima of the complex and the iodine

absorption bands), measured with a Perkin-Elmerλ15 spectrophotometer. This case is also
modelled by Eq. (15), withε λ

D (the molar absorption coefficient of DMSO) put to zero, so that

there are altogether 5 parameters to estimate, includingQ.

Table 2. Estimated parameters of the charge-transfer formation equilibrium I2 + DMSO. Nine

mixtures were measured at two wavelengths, to give 18 experimental points.

parameter mean value
standard
deviation

Q 9.7 1.1

ε I 2

446 /M–1cm–1
133.1 12

εcomplex
446 /M–1cm–1

1484 72

ε I 2

518 /M–1cm–1
950 9

εcomplex
518 /M–1cm–1

142 45

Results of this analysis in Table 2 show that the precision of the parameters is quite

satisfying. Molar absorptivities of the iodine obtained this way agree very well with those

determined from pure I2 dissolved in CCl4. (Performing the non-linear fit at the two

wavelengths separately, the 95 % confidence intervals ofQ obtained are are 6.3-12.2 at 446

nm and 8.2-19.7 at 518 nm, compared to 7.3-12.2 obtained with the simultaneous fit to both

datasets. This illustrates that estimated equilibrium quotients from single datasets might be

close to one or the other end of the confidence interval of the simultaneous fit.)
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Figure 2. Plot of the fit of Eq. (15) to the experimental data points (triangles) for the

I2 - DMSO charge-transfer complex formation. 446 nm is the maximum of the

complex absorption band, 518 nm is that of the I2 band. The initial I2 concentration

is 0.001 M throughout.

We also analyzed a large set of data measured for the nine mixtures at 106 wavelengths

from 400 nm to 530 nm, supposing Gaussian band shapes for both absorbing species. To get

the corresponding 954 data points does not take that much time; making a digital data

collection at equidistant wavelengths is a routine procedure with modern spectrophotometers.

The Gaussian band shape can be written in the following, general form:

( )





























−

−=
2

2

max
2

exp
2/ w

KK

w

A
G

λλ
π

λε (18)

where λ is the wavelength, maxλ is the wavelength at the maximum of the band, and the

constantK = 1239.84 eV·nm is to convert wavelength to energy in eV units. (The band shape

should be calculated as a function of energy, instead of wavelength.) Accordingly,w, the width

of the band at its half height is also in eV units.A is the area of the band in corresponding
units. This function is added to the model equation (15) to replace the appropriateλε values.

Parameters thus obtained are listed in Table 3, indicating a remarkable precision of the

equilibrium constant and the spectral parameters as well. Figure 3a shows the fit of Eq. (15)

combined with the Gaussian band to the measured absorbances.



10

Table 3. Estimated parameters of the charge-transfer formation equilibrium I2 + DMSO. Nine

mixtures were measured at 106 wavelengths, to give 954 experimental points.

Absorption spectra of the I2 and the charge transfer species were calculated as

Gaussian bands. Band parameters are from Eq. (18).

parameter mean value
standard
deviation

Q 12.9 0.14

maxλ (I2) / nm 516.6 0.13

A(I2) 438.4 1.23

w(I2) / eV 0.367 0.001

maxλ (complex)/ nm 447.2 0.10

A(complex) 693.1 2.1

w(complex)/ eV 0.409 0.001

It is readily seen that the 1:1 complex equilibrium together with the two Gaussian band

shapes describes the studied experimental data fairly well, but there seem to be some

systematic errors, i. e., the fitted curves seem to deviate systematically from the experimental

data especially in the range of 400 to 450 nm. The calculated contribution of the two species

and the their sum is shown in Figure 4a for one of the best-fit series. Here, the deviation is also

evident as a slightly s-shaped systematic difference in the same wavelength range.

One possible explanation for this systematic difference is that the complex band cannot

be fitted with a Gaussian, so we also tried another model, fitting the linear combination of a

Gaussian and a Lorentzian function to the complex band, but leaving the I2 band as a Gaussian,

since there wasn’t any s-shaped deviation in that part of the spectrum. The Lorentzian function

can be written in a similar form, using the same variables and parameters as with the Gaussian

function:

( )
2

2

max
4

2

w
KK

wA
L

+







−

=

λλ

π
λε (19)

In this second model function, we addedxL percent of the Lorentzian and 1 –xL percent

of the Gaussian to get the absorbance of the complex band, so that the absorptivity is

)()1()(com λελεε λ
GLLL xx ⋅−+⋅= (20)
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Results thus obtained are shown in Table 4., and the fit of the composite band function

can be seen in Figure 3b.

Table 4. Estimated parameters of the charge-transfer formation equilibrium I2 + DMSO for the

same data as in Table 3. Here, the absorption spectrum of the complex was

calculated as a linear combination of a Lorentzian and a Gaussian band. Band

parameters are from Eqs. (18), (19), and (20).

parameter mean value
standard
deviation

Q 11.8 0.10

maxλ (I2) / nm 516.0 0.11

w(I2) / eV 0.364 0.0009

A(I2) 434.3 1.01

maxλ (Gauss, complex)/ nm 449.3 0.38

w(Gauss, complex)/ eV 0.371 0.004

maxλ (Lorentz, complex)/ nm 408.0 1.3

w(Lorentz, complex)/ eV 0.376 0.044

A(complex) 745.8 11.8

xL (Lorentz percentage) 15.6 3.3

Here, there is no evidence of systematic error, so this excellent fit can be accepted as an

adequate model for the description of the charge transfer complex formation equilibrium.

Comparing the 95 % confidence interval obtained with this obviously reliable overall fit (11.6-

12.1) to that obtained from the two datasets of Fig. 2 (7.3-12.2), we can see that there is an

important improvement of the precision, and the reliable overall fit supports the higherQ

values from the global fit. We would like to emphasize at this point that the fit including band

shapes is essentially non-linear, so it would not have been possible to get such a global fit using

linearized methods.
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Figure 3. a) Plot of the fit of Eq. (15), with molar absorbtivities calculated from Gaussian band

parameters according to Eq. (18), to the measured absorbances of a series of nine

mixtures of 0.01 to 0.09 M DMSO and 0.001 M I2 in CCl4 solution. Open circles

are measured experimental points; solid curves show the fitted function. Note the s-

shaped systematic deviation of the fitted curves in the lower wavelength range. b)

Same plot with fitted curves using linear combination of Gaussian and Lorentzian

bands according to Eq. (20). There are no s-shaped systematic deviations in this

plot.
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Figure 4. Plots of the fit for the single mixture of 0.04 M DMSO from Figure 3, with the

contribution of the two absorbing species. The presence in a) and the absence in b)

of the s-shaped systematic deviation is clearly seen.

As a hint for actual laboratory application of the method, we would propose to evaluate

the results of any 1:1 complex equilibrium lab experiment, using raw spectrophotometry data,

with Eq. (14) or (15), optionally adding – in case of data measured in a wide wavelength range

– the calculation of molar absorptivities according to Eqs. (18), (19) or (20).
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Worked examples

As we have pointed out earlier, the aim of this paper is also to show the ease of use of

non-linear parameter estimation models with modern software applications. We have selected

Origin 5.0 from Microcal Software to prepare worked examples with. This selection is due to

the excellent graphical options and the versatile non-linear fitting capabilities of this product,

together with the free availability of a demo version, which includes full features of the product

and complete manuals as well. Studying the Origin project files, the reader can have an

interactive fitting session, which we hope could develop some skill in non-linear fitting.

Available project files include the material of Figure 1 (simple fit), Figure 2 (multiple fit)

and Figure 3 and 4 (complicated band model fits and the calculation of the contributing bands).

To see the examples, you need to download Microcal Origin Version 5.0 Demo from the

http://www.microcal.com web site (unless you already have Version 5.0). (The present version

is 6.0, available at the http://www.OriginLab.com web site. All the examples work also with

this version.) Once you will have installed the software, you need to create a subdirectory in

the parent directory containing the file Origin50.exe (or Origin60.exe, respectively), called

“NonLinQ”. Then you need to download the contents of this NonLinQ subdirectory from the

Journal site. The ReadMe.txt file contains the listing of all the files you need to have in this

subdirectory. Having done all this, you have to open the Example. OPJ project file from

Origin, andactivate at least the button “Step 1”. This will automatically customize Origin so

that all example projects are ready to run. The first example (Example.OPJ) contains both a

layout window and a notes window, where you can find explanations to study the project. All

further examples contain only notes windows with explanations.

Here is a short description of what can be studied with the project files included.

Example.OPJcustomizes Origin to run this and the other examples (Step1 button), and

describes in details how to perform a non-linear curve fit, with data from Figure 1. The

procedure can be done either using the appropriate commands in Origin, or simply pushing

four buttons one after another and watching what happens.

2wlFit.OPJ illustrates how to perform a multiple fit (fit a function simultaneously to

multiple set of data) with data from Figure 2.

GbFit.OPJandGLbFit.OPJshow the fit of complicated functions containing the shape

of two absorption bands to a large dataset with data from Figure 3.

Gbands.OPJand GLbands.OPJshow the calculation of the bands of two absorbing

species contributing to the measured spectrum. Results of these calculations are shown in

Figure 4.
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Conclusion

We would like to recall some properties of the non-linear method. It is simple and

straightforward in the sense that there is no need to manipulate measured absorbances (except

a practical normalization to 1 cm path length), we can measure at concentrations and

wavelengths where we get maximum information for the equilibrium constant – regardless of

the applicability of linear approximations –, and we can use the same model function in the

entire concentration range.

A further great advantage is that we can include analytical – or even numerical –

expressions for the individual components’ absorption band shapes and get a global description

of the equilibrium in a wide wavelength range and at arbitrarily large number of different

wavelengths. This latter helps not only to increase the precision of the equilibrium constant,

but provides the components spectra as well. In addition to improve the quality of

interpretation of analytical and optical inference, these features have obvious pedagogical

advantages. There are plenty of possibilities – especially in practical courses – to implement the

non-linear evaluation method, thus offering a unique interpretation and explanation of the

concept of chemical equilibria and spectral contributions.
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