1st Physical Chemistry Midterm Exam, 6th October 2005
$4+5+5+5+4=23$ points, 20 points $=100 \%$

1. State Postulate II of Callen. In the internal energy representation, what is the equivalent of the entropy maximum principle? Formulate mathematically what the entropy maximum means for a simple system. (4 points)
2. Is the following equation of a simple system consistent with Postulates II-IV?

$$
S=(R / \theta)^{1 / 2}(N U)^{1 / 2} \exp \left(-\frac{U V}{N R \theta v_{0}}\right)
$$

R, θ and v_{0} are positive constants, and only the real positive root is to be taken when fractional exponents appear. (5 points)
3. Calculate the quasi-static heat for the following process. The system is initially at state A $\left(P_{A}=10^{3} \mathrm{~Pa}\right)$ and quasi-statically moves along the line $P / \mathrm{Pa}=\left((V-2) / \mathrm{m}^{3}\right)^{3}$. The final state is $\mathrm{B}\left(P_{B}=8 \times 10^{3} \mathrm{~Pa}\right)$. Points A and B also lie on the adiabat of this particular system, and if the pressure changes along this adiabat, the work done is -15 kJ . (5 points)
4. Two isolated cylinders (A and B) are separated by a wall, which is diathermal, moveable, but impermeable with respect to matter. Cylinder A is filled with a monatomic ideal gas $\left(f_{1}=3\right)$, while cylinder B is filled with a diatomic ideal gas $\left(f_{2}=5\right)$. Initially the two systems are at equilibrium: $U_{A}=10 \mathrm{~kJ}, V_{A}=5 \mathrm{dm}^{3}, N_{A}=3$, and $N_{B}=2$.
(a) Calculate the volume of cylinder B. (2.5 points)
(b) Subsequently 3 kJ heat is introduced in cylinder A by means of an electric wire. Calculate the temperature and the pressure at the new equilibrium. (2.5 points)
The internal energy of ideal gases is $U=\frac{f}{2} P V$.
5. A system obeys the two equations $u=3 / 2 P v$ and $u^{1 / 2}=B T v^{1 / 3}$. Find the extensive fundamental equation of the system (B is a constant). (4 points)
$R=8.314 \frac{\mathrm{~J}}{\mathrm{molK}} \quad N_{A}=6.022 \cdot 10^{23} \quad k=1.38 \cdot 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \quad g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$
$1 \mathrm{P}=0.1 \mathrm{~Pa} \mathrm{~s}^{-1} \quad 1 \mathrm{~atm}=101325 \mathrm{~Pa} \quad 1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
$U=\frac{3}{2} N R T \quad U=\frac{5}{2} N R T$
$P V=N R T$
$d U=\mathrm{d} W+\mathrm{d} Q \quad \mathrm{~d} W=-P d V \quad \mathrm{~d} Q=T d S$
$\eta=1-\frac{T_{c}}{T_{h}}$
$d U=T d S-P d V+\sum_{i} \mu_{i} d N_{i} \quad d S=\frac{1}{T} d U+\frac{P}{T} d V-\sum_{i} \frac{\mu_{i}}{T} d N_{i}$
$S d T-V d P+\sum_{i} N_{i} d \mu_{i}=0 \quad U d \frac{1}{T}+V d \frac{P}{T}-\sum_{i} N_{i} d \frac{\mu_{i}}{T}=0$
$H=U+P V \quad F=U-T S \quad G=U-T S+P V$
$H=\left(\frac{\partial(G / T)}{\partial(1 / T)}\right)_{P}$
$\left(\frac{\partial \mu}{\partial T}\right)_{P}=-s \quad\left(\frac{\partial \mu}{\partial P}\right)_{T}=v$
$\alpha \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}$
$\kappa_{T} \equiv-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T} \quad \kappa_{s} \equiv-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{S}$
$c_{P} \equiv \frac{T}{N}\left(\frac{\partial S}{\partial T}\right)_{P}=\frac{1}{N}\left(\frac{\partial Q}{\partial T}\right)_{P}$
$c_{v} \equiv \frac{T}{N}\left(\frac{\partial S}{\partial T}\right)_{V}=\frac{1}{N}\left(\frac{\partial Q}{\partial T}\right)_{V}$
$c_{P}=c_{v}+\frac{T V \alpha^{2}}{N \kappa_{T}} \quad \kappa_{T}=\kappa_{s}+\frac{T V \alpha^{2}}{N c_{P}}$

